Skip to main content
Log in

Complete strangeness measurements in heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We discuss strangeness production in heavy-ion collisions within and around the energy range of the planned NICA facility. We describe a minimal statistical model, in which the total strangeness yield is fixed by the observed or calculated \( K^{+}\) multiplicity. We show how the exact strangeness conservation can be taken into account on event-by-event basis in such a model. We argue that from strange particle yields one can reveal information about the collision dynamics and about possible modifications of particle properties in medium. This can be best achieved if the complete strangeness measurement is performed, i.e. kaons, antikaons, hyperons and multistrange hyperons are registered in the same experimental setup. In particular, production of hadrons containing two and more strange quarks, like \(\Xi\) and \(\Omega\) baryons could be of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Harris et al., Phys. Rev. Lett. 47, 229 (1981)

    Article  ADS  Google Scholar 

  2. S. Schnetzer et al., Phys. Rev. Lett. 49, 989 (1982)

    Article  ADS  Google Scholar 

  3. C.M. Ko, Phys. Lett. B 120, 294 (1983)

    Article  ADS  Google Scholar 

  4. E.E. Kolomeitsev et al., I. J. Mod. Phys. E 5, 316 (1996)

    ADS  Google Scholar 

  5. C. Greiner, H. Stöcker, Phys. Rev. D 44, 3517 (1991)

    Article  ADS  Google Scholar 

  6. L. Fabbietti et al., Nucl. Phys. A 914, 60 (2013)

    Article  ADS  Google Scholar 

  7. J.C. Berger-Chen, L. Fabbietti, arXiv:1410.8004 (2014)

  8. Yu. Valdau et al., Phys. Lett. B 652, 245 (2007)

    Article  ADS  Google Scholar 

  9. Yu. Valdau et al., Phys. Rev. C 81, 045208 (2010)

    Article  ADS  Google Scholar 

  10. M. Abdel-Bary et al., Eur. Phys. J. A 48, 37 (2012)

    Article  ADS  Google Scholar 

  11. H.G. Fischer, Acta Phys. Pol. B 33, 1473 (2002)

    ADS  Google Scholar 

  12. H.G. Fischer, Nucl. Phys. A 715, 118 (2003)

    Article  ADS  Google Scholar 

  13. M. Gazdzicky, D. Rörich, Z. Phys. C 71, 55 (1996)

    Article  ADS  Google Scholar 

  14. Ch. Fuchs, Prog. Part. Nucl. Phys. 53, 113 (2004)

    Article  ADS  Google Scholar 

  15. Ch. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006)

    Article  ADS  Google Scholar 

  16. Ch. Hartnack et al., Phys. Rep. 510, 119 (2012)

    Article  ADS  Google Scholar 

  17. J. Cleymans et al., Phys. Lett. B 485, 27 (2000)

    Article  ADS  Google Scholar 

  18. J. Cleymans et al., Phys. Lett. B 603, 146 (2004)

    Article  ADS  Google Scholar 

  19. A. Förster et al., Phys. Rev. C 75, 024906 (2007)

    Article  ADS  Google Scholar 

  20. N. Herrmann, J. Phys. G: Nucl. Part. Phys. 37, 094036 (2010)

    Article  ADS  Google Scholar 

  21. D.N. Voskresensky, Sov. J. Nucl. Phys. 50, 983 (1989)

    Google Scholar 

  22. D.N. Voskresensky, Nucl. Phys. A 555, 293 (1993)

    Article  ADS  Google Scholar 

  23. G.Q. Li et al., Nucl. Phys. A 625, 372 (1997)

    Article  ADS  Google Scholar 

  24. W. Cassing et al., Nucl. Phys. A 727, 59 (2003)

    Article  ADS  Google Scholar 

  25. E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 759, 373 (2005)

    Article  ADS  Google Scholar 

  26. A.S. Khvorostukhin et al., Nucl. Phys. A 791, 180 (2007)

    Article  ADS  Google Scholar 

  27. A.S. Khvorostukhin et al., Nucl. Phys. A 813, 313 (2008)

    Article  ADS  Google Scholar 

  28. M.F.M. Lutz et al., J. Phys. G: Nucl. Part. Phys. 28, 1729 (2002)

    Article  ADS  Google Scholar 

  29. C.L. Korpa, M.F.M. Lutz, Acta Phys. Hung. A 22, 21 (2005)

    Article  Google Scholar 

  30. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002)

    Article  ADS  Google Scholar 

  31. M.F.M. Lutz, C.L. Korpa, Nucl. Phys. A 700, 309 (2002)

    Article  ADS  Google Scholar 

  32. L. Tolos et al., Phys. Rev. C 74, 015203 (2006)

    Article  ADS  Google Scholar 

  33. W. Cassing et al., Nucl. Phys. A 727, 59 (2003)

    Article  ADS  Google Scholar 

  34. B. Tomášik, E.E. Kolomeitsev, Eur. Phys. J. C 49, 115 (2007) arXiv:nucl-th/0512088

    Article  ADS  Google Scholar 

  35. C. Alt et al., J. Phys. G: Nucl. Part. Phys. 30, S119 (2004)

    Article  Google Scholar 

  36. S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002)

    Article  ADS  Google Scholar 

  37. B. Lungwitz, AIP Conf. Proc. 828, 321 (2006)

    Article  ADS  Google Scholar 

  38. F. Becattini et al., Phys. Rev. C 69, 024 (2004)

    Article  Google Scholar 

  39. E.E. Kolomeitsev et al., Phys. Rev. C 86, 054909 (2012)

    Article  ADS  Google Scholar 

  40. V.N. Russkikh, Yu.B. Ivanov, Nucl. Phys. A 543, 751 (1992)

    Article  ADS  Google Scholar 

  41. G. Agakishiev et al., Eur. Phys. J. A 47, 21 (2011)

    Article  ADS  Google Scholar 

  42. G. Agakishiev et al., Phys. Rev. Lett. 103, 132301 (2009)

    Article  ADS  Google Scholar 

  43. H. Polinder et al., Phys. Lett. B 653, 29 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni E. Kolomeitsev.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomášik, B., Kolomeitsev, E. Complete strangeness measurements in heavy-ion collisions. Eur. Phys. J. A 52, 251 (2016). https://doi.org/10.1140/epja/i2016-16251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16251-6

Navigation