Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

Open Access
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Exploring strongly interacting matter at high densities - NICA White Paper

Abstract.

The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D\( \chi\) SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D\( \chi\) SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

References

  1. 1.
    Z. Fodor, S. Katz, JHEP 04, 050 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, K. Szabo, Nature 443, 675 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Borsányi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti et al., JHEP 01, 138 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A. Bazavov, T. Bhattacharya, M. Cheng, C. Detar, H.-T. Ding et al., Phys. Rev. D 85, 054503 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch et al., Phys. Rev. Lett. 109, 192302 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Borsányi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabó, Phys. Lett. B 730, 99 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, Phys. Lett. B 747, 292 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    A. Bender, G. Poulis, C.D. Roberts, S.M. Schmidt, A.W. Thomas, Phys. Lett. B 431, 263 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Buballa, Phys. Rep. 407, 205 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Alford, D. Blaschke, A. Drago, T. Klähn, G. Pagliara et al., Nature 445, E7 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G. Pagliara, J. Schaffner-Bielich, Phys. Rev. D 77, 063004 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich et al., Phys. Rev. Lett. 102, 081101 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    G. Pagliara, M. Hempel, J. Schaffner-Bielich, Phys. Rev. Lett. 103, 171102 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D. Blaschke, F. Sandin, T. Klähn, J. Berdermann, Phys. Rev. C 80, 065807 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T. Klähn, C.D. Roberts, L. Chang, H. Chen, Y.-X. Liu, Phys. Rev. C 82, 035801 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    T. Klähn, D. Blaschke, R. Lastowiecki, Acta Phys. Pol. Suppl. B 5, 757 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Chen, M. Baldo, G. Burgio, H.-J. Schulze, Phys. Rev. D 84, 105023 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich et al., Astrophys. J. Suppl. 194, 9 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Blaschke, D. Zablocki, M. Buballa, A. Dubinin, G. Röpke, Ann. Phys. 348, 228 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kurkela, E.S. Fraga, J. Schaffner-Bielich, A. Vuorinen, Astrophys. J. 789, 127 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T. Beisitzer, R. Stiele, J. Schaffner-Bielich, Phys. Rev. D 90, 085001 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    E. Farhi, R. Jaffe, Phys. Rev. D 30, 2379 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)ADSCrossRefGoogle Scholar
  29. 29.
    S. Klevansky, Rev. Mod. Phys. 64, 649 (1992)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Klähn, T. Fischer, Astrophys. J. 810, 134 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Bashir, L. Chang, I.C. Cloet, B. El-Bennich, Y.-X. Liu et al., Commun. Theor. Phys. 58, 79 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    I.C. Cloet, C.D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    L. Chang, C.D. Roberts, P.C. Tandy, Chin. J. Phys. 49, 955 (2011)Google Scholar
  34. 34.
    C.D. Roberts, in IRMA Lectures in Mathematics & Theoretical Physics, arXiv:1203.5341 [nucl-th]
  35. 35.
    H. Chen, W. Yuan, L. Chang, Y.-X. Liu, T. Klähn et al., Phys. Rev. D 78, 116015 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    H. Chen, J.B. Wei, M. Baldo, G. Burgio, H.J. Schulze, Phys. Rev. D 91, 105002 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    T. Klähn, C.D. Roberts, L. Chang, H. Chen, Y.-X. Liu, Phys. Rev. C 82, 035801 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S.-X. Qin, L. Chang, H. Chen, Y.-X. Liu, C.D. Roberts, Phys. Rev. Lett. 106, 172301 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    C.S. Fischer, J. Luecker, C.A. Welzbacher, Phys. Rev. D 90, 034022 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    S. Typel, G. Röpke, T. Klähn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    L. McLerran, K. Redlich, C. Sasaki, Nucl. Phys. A 824, 86 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A. Andronic, D. Blaschke, P. Braun-Munzinger, J. Cleymans, K. Fukushima et al., Nucl. Phys. A 837, 65 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    T. Klähn, T. Fischer, M. Hempel, submitted to Astrophys. J., arXiv:1603.03679 [nucl-th] (2016)
  45. 45.
    H. Grigorian, B. Hermann, F. Weber, Phys. Part. Nucl. 30, 156 (1999)CrossRefGoogle Scholar
  46. 46.
    M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy, Phys. Rev. C 88, 014906 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    I. Iosilevskiy, Enthalpic and entropic phase transitions in high energy density nuclear matter, in Physics of Extreme States of Matter, edited by V. Fortov (Chernogolovka, Russia, IPCP RAS Publishing, 2013) p. 136. Google Scholar
  48. 48.
    I. Iosilevskiy, eConf C140926 (2015) arXiv:1504.05850v4
  49. 49.
    V.A. Dexheimer, S. Schramm, Phys. Rev. C 81, 045201 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    J. Randrup, Phys. Rev. C 82, 034902 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    J. Steinheimer, S. Schramm, H. Stöcker, Phys. Rev. C 84, 045208 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    J. Steinheimer, S. Schramm, H. Stöcker, J. Phys. G Nucl. Phys. 38, 035001 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    J. Steinheimer, J. Randrup, V. Koch, Phys. Rev. C 89, 034901 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Tobias Fischer
    • 1
  • Thomas Klähn
    • 1
  • Matthias Hempel
    • 2
  1. 1.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations