Advertisement

Observables and open problems for NICA

  • E. L. Bratkovskaya
  • W. Cassing
  • P. Moreau
  • A. Palmese
Review
Part of the following topical collections:
  1. Exploring strongly interacting matter at high densities - NICA White Paper

Abstract.

The restoration of chiral symmetry in hot dense nuclear systems in competition with a transition to deconfined matter in central nucleus-nucleus collisions at NICA energies is a central problem of nuclear physics. To explore these transitions we study the production of hadrons in nucleus-nucleus collisions from 4 to 160A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral-symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. The modeling of chiral-symmetry restoration in PHSD is driven by the pion-nucleon \(\Sigma\)-term in the computation of the quark scalar condensate \(\langle q \bar{q} \rangle\) that serves as an order parameter for CSR and is assumed to scale with the effective quark masses \( m_{s}\) and \( m_{q}\). Furthermore, the nucleon scalar density \(\rho_{s}\), which also enters the computation of \(\langle q \bar{q} \rangle\), is evaluated within the nonlinear \(\sigma\)-\( \omega\) model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. We find that above \(\sim 80\) A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees-of-freedom such that traces of the chiral-symmetry restoration are hard to identify. Our studies support the conjecture of “quarkyonic matter” in heavy-ion collisions from about 5 to 40A GeV and suggest a microscopic explanation for the maximum in the \( K^{+}/\pi^{+}\) ratio at about 30A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.

References

  1. 1.
    Y. Aoki et al., Phys. Lett. B 643, 46 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S. Borsanyi et al., JHEP 09, 073 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S. Borsanyi et al., JHEP 11, 077 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S. Borsanyi et al., JHEP 08, 126 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Federico Antinori, Roberta Arnaldi, Andrea Dainese, Alessandro De Falco, Francesco Prino, Enrico Scomparin, Rosario Turrisi, Gianluca Usai (Editors), Nucl. Phys. A 931, 1 (2014) (Proceedings of Quark Matter-2014)CrossRefGoogle Scholar
  6. 6.
    P. Senger et al., Lect. Notes Phys. 814, 681 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Fischer, J. Luecker, C. Welzbacher, Phys. Rev. D 90, 034022 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Fischer, L. Fister, J. Luecker, J.M. Pawlowski, Phys. Lett. B 732, 273 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T.K. Herbst, J.M. Pawlowski, B.-J. Schaefer, Phys. Rev. D 88, 014007 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. Birse, J. Phys. G 20, 1537 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    V. Koch, Int. J. Mod. Phys. E 6, 203 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    J.V. Steele, H. Yamagishi, I. Zahed, Phys. Lett. B 384, 255 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    J.V. Steele, H. Yamagishi, I. Zahed, Phys. Rev. D 56, 5605 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Brown, Prog. Theor. Phys. 91, 85 (1987)CrossRefGoogle Scholar
  16. 16.
    L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Andronic et al., Nucl. Phys. A 837, 65 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Fukushimi, C. Sasaki, Prog. Part. Nucl. Phys. 72, 99 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)ADSCrossRefGoogle Scholar
  20. 20.
    S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Marty et al., Phys. Rev. C 88, 045204 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J. Rafelski, B. Müller, Phys. Rev. Lett. 48, 1066 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    R. Stock, J. Phys. G 28, 1517 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M. Gazdzicki, M.I. Gorenstein, Acta Phys. Pol. B 30, 2705 (1999)ADSGoogle Scholar
  25. 25.
    M. Gazdzicki, M. Gorenstein, P. Seyboth, Acta Phys. Pol. B 42, 307 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Geiss, W. Cassing, C. Greiner, Nucl. Phys. A 644, 107 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    H. Weber, E.L. Bratkovskaya, W. Cassing, H. Stöcker, Phys. Rev. C 67, 014904 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    E.L. Bratkovskaya, W. Cassing, V.P. Konchakovski, O. Linnyk, Nucl. Phys. A 856, 162 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    V.P. Konchakovski et al., Phys. Rev. C 85, 044922 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    V.P. Konchakovski et al., Phys. Rev. C 85, 011902 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    O. Linnyk et al., Phys. Rev. C 89, 034908 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    O. Linnyk et al., Phys. Rev. C 87, 014905 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    O. Linnyk et al., Phys. Rev. C 84, 054917 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    O. Linnyk et al., Nucl. Phys. A 855, 273 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    V.P. Konchakovski, W. Cassing, Yu.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    E.L. Bratkovskaya, S. Soff, H. Stöcker, M. van Leeuwen, W. Cassing, Phys. Rev. Lett. 92, 032302 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    B. Andersson, G. Gustafson, H. Pi, Z. Phys. C 57, 485 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    J. Schwinger, Phys. Rev. 83, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    W. Cassing, Nucl. Phys. A 700, 618 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    C.H. Li, C.M. Ko, Nucl. Phys. A 712, 110 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    F. Li, L.W. Chen, C.M. Ko, Phys. Rev. C 85, 064902 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire, CERN-HERA-83-02Google Scholar
  48. 48.
    B. Friman, W. Nörenberg, V.D. Toneev, Eur. Phys. J. A 3, 165 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, Phys. Rev. C 93, 014902 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X. Jin, Prog. Part. Nucl. Phys. 35, 221 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    A. Lang et al., Z. Phys. A 340, 287 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    F. de Jong, R. Malfliet, Phys. Rev. C 44, 998 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    F. de Jong, B. ter Haar, R. Malfliet, Phys. Lett. B 220, 485 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    W. Cassing, E.L. Bratkovskaya, S. Juchem, Nucl. Phys. A 674, 249 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    E-0895 Collaboration (J.L. Klay et al.), Phys. Rev. C 68, 054905 (2003)CrossRefGoogle Scholar
  58. 58.
    E866 and E917 Collaborations (L. Ahle et al.), Phys. Lett. B 476, 1 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    E866 and E917 Collaborations (L. Ahle et al.), Phys. Lett. B 490, 53 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 024903 (2008)CrossRefGoogle Scholar
  61. 61.
    NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)CrossRefGoogle Scholar
  62. 62.
    STAR Collaboration (S. Das), arXiv:1412.0499 [nucl-ex]
  63. 63.
    STAR Collaboration (X. Zhu), J. Phys. Conf. Ser. 509, 012004 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    E895 Collaboration (J.L. Klay et al.), Phys. Rev. Lett. 88, 102301 (2002)CrossRefGoogle Scholar
  65. 65.
    E895 Collaboration (C. Pinkenburg et al.), Nucl. Phys. A 698, 495 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    NA49 Collaboration (C. Alt C. et al.), Phys. Rev. C 73, 044910 (2006)CrossRefGoogle Scholar
  67. 67.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 78, 034918 (2008)CrossRefGoogle Scholar
  68. 68.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. Lett. 94, 192301 (2005)CrossRefGoogle Scholar
  69. 69.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 024911 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)CrossRefGoogle Scholar
  71. 71.
    P. Moreau, F. Li, C.-M. Ko, W. Cassing, E.L. Bratkovskaya, to be published in Proceedings of the 15th International Conference on Strangeness in Quark Matter (SQM 2015), 6--11 July 2015, JINR, Dubna, Russia, arXiv:1509.04455 [nucl-th]

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. L. Bratkovskaya
    • 1
  • W. Cassing
    • 2
  • P. Moreau
    • 1
  • A. Palmese
    • 2
  1. 1.Frankfurt Institute for Advanced Studies and Institut für Theoretische PhysikJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany
  2. 2.Institut für Theoretische PhysikUniversität GießenGießenGermany

Personalised recommendations