Probing nuclear bubble configuration by the \(\pi^{-} / \pi^{+}\) ratio in heavy-ion collisions

Regular Article - Theoretical Physics
  • 60 Downloads

Abstract.

It is theoretically and experimentally argued that there may exist bubble or toroid-shaped configurations in some nucleus systems. Based on the isospin-dependent transport model of nucleus-nucleus collisions, here we propose a method to probe the bubble configuration in the nucleus. That is, one could use the value of the \( \pi^{-} / \pi^{+}\) ratio especially its kinetic energy distribution in head-on collision at intermediate energies to probe whether there is bubble configuration or not in projectile and target nuclei. Due to different maximum compressions and the effect of symmetry energy, the value of the \(\pi^{-} / \pi^{+}\) ratio in the collision of bubble nuclei is evidently larger than that in the collision of normal nuclei.

Keywords

Beam Energy Symmetry Energy Bubble Radius Kinetic Energy Distribution Liquid Drop Model 

References

  1. 1.
    J. Dechargé, J.F. Berger, K. Dietrich, M.S. Weiss, Phys. Lett. B 451, 275 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    J. Dechargé, J.F. Berger, M. Girod, K. Dietrich, Nucl. Phys. A 716, 55 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    W. Nazarewicz et al., Nucl. Phys. A 701, 165 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Wilson, Phys. Rev. 69, 538 (1946)ADSCrossRefGoogle Scholar
  5. 5.
    P.J. Siemens, H.A. Bethe, Phys. Rev. Lett. 18, 704 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    C.Y. Wong, Phys. Lett. B 41, 446 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    C.Y. Wong, Phys. Lett. B 41, 451 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    K.T.R. Davies, C.Y. Wong, S.J. Krieger, Phys. Lett. B 41, 455 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    X. Campi, D.W.L. Sprung, Phys. Lett. B 46, 291 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yu, A. Bulgac, P. Magierski, Phys. Rev. Lett. 84, 412 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    C.Y. Wong, Ann. Phys. 77, 279 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    L.G. Moretto, K. Tso, G.J. Wozniak, Phys. Rev. Lett. 78, 824 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    M. Borunda, J.A. López, Nuovo Cimento A 107, 2773 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    W. Bauer, George F. Bertsch, Hartmut Schulz, Phys. Rev. Lett. 69, 1888 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    D.H.E. Gross, Bao-An Li, A.R. DeAngelis, Ann. Phys. (Berlin) 504, 467 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Bao-An Li, D.H.E. Gross, Nucl. Phys. A 554, 257 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    H.M. Xu, J.B. Natowitz, C.A. Gagliardi, R.E. Tribble, C.Y. Wong, W.G. Lynch, Phys. Rev. C 48, 933 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    K. Cherevko, L. Bulavin, J. Su, V. Sysoev, F.S. Zhang, Phys. Rev. C 89, 014618 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    G.C. Yong, Phys. Rev. C 93, 014602 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)CrossRefGoogle Scholar
  22. 22.
    K. Dietrich, K. Pomorski, Nucl. Phys. A 627, 175 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    K. Dietrich, K. Pomorski, Phys. Rev. Lett. 80, 37 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Yao, H. Mei, Z.P. Li, Phys. Lett. B 723, 459 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    R. Najman et al., Phys. Rev. C 92, 064614 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A.N. Antonov et al., Nucl. Instrum. Methods Phys. Res. A 637, 60 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    The CLAS Collaboration (O. Hen et al.), Science 346, 614 (2014)CrossRefGoogle Scholar
  30. 30.
    G.C. Yong, arXiv:1503.08523 (2015)
  31. 31.
    Hall A. Collaboration (R. Subedi et al.), Science 320, 1476 (2008)CrossRefGoogle Scholar
  32. 32.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    B.J. Cai, B.A. Li, Phys. Rev. C 92, 011601 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    O. Hen, B.A. Li, W.J. Guo, L.B. Weinstein, E. Piasetzky, Phys. Rev. C 91, 025803 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    J. Xu, L.W. Chen, B.A. Li, H.R. Ma, Astrophys .J. 697, 1549 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    G.C. Yong, arXiv:1504.02528 (2015)
  38. 38.
    Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 407 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    T. Song, C.M. Ko, Phys. Rev. C 91, 014901 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    B.A. Li, G.C. Yong, W. Zuo, Phys. Rev. C 71, 014608 (2005)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations