Large-scale liquid scintillation detectors for solar neutrinos

Regular Article - Experimental Physics
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics

Abstract.

Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed.

Keywords

Solar Neutrino Liquid Scintillator Sudbury Neutrino Observatory Radioactive Impurity Liquid Scintillation Detector 

References

  1. 1.
    R. Davis, Phys. Rev. Lett. 12, 303 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    R. Davis, Rev. Mod. Phys. 75, 985 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    W. Hampel et al., Phys. Lett. B 447, 127 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    J.N. Abdurashitov et al., Phys. Rev. Lett. 83, 4686 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Hirata et al., Phys. Rev. Lett. 65, 1297 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Hirata et al., Phys. Rev. Lett. 66, 9 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    K.S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    J.N. Bahcall, Int. J. Mod. Phys. A 18, 3761 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    J.N. Bahcall et al., Astrophys. J. 618, 1049 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    J.N. Bahcall, M.C. Gonzalez-Garcia, C. Pena-Garay, JHEP 08, 014 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Q.R. Ahmad et al., Phys. Rev. Lett. 8707, 071301 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kovacs et al., Solar Phys. 128, 61 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    G. Alimonti et al., Nucl. Phys. B 32, 149 (1993)CrossRefGoogle Scholar
  15. 15.
    G. Alimonti et al., Nucl. Instrum. Methods A 406, 411 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    F. Suekane et al., Prog. Part. Nucl. Phys. 57, 106 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    KamLAND Collaboration (A. Gando et al.), Phys. Rev. C 92, 055808 (2015) arXiv:1405.6190 ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Chen, J. Phys. Conf. Ser. 120, 052001 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    SNO Collaboration and L. Sibley, AIP Conf. Proc. 1604, 449 (2014)ADSGoogle Scholar
  20. 20.
    Lens Collaboration (Christian Grieb), Nucl. Phys. B Proc. Suppl. 168, 122 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    LENA Collaboration (Michael Wurm), The physics potential of the lena detector, arXiv:1004.3474 (2010)
  22. 22.
    J.N. Bahcall, Phys. Rep. 333, 47 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Glenn F. Knoll, Radiation Detection and Measurement, 4th edition (Wiley, Hobenken N.J., 2010)Google Scholar
  24. 24.
    G. Ranucci, Techniques and methods for the low energy neutrino detection, contribution to this Topical IssueGoogle Scholar
  25. 25.
    J.B. Benziger et al., Nucl. Instrum. Methods A 417, 278 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    J. Benziger, F. Calaprice, M. Johnson, T. Shutt, Environmental effect on the optical properties of pseudocumene, Report Borexino Research Report (Princeton University, 1998)Google Scholar
  27. 27.
    J. Benziger et al., Nucl. Instrum. Methods A 608, 464 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    G. Ranucci et al., Nucl. Instrum. Methods A 333, 553 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    M. Johnson et al., Nucl. Instrum. Methods A 414, 459 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    G. Alimonti et al., Nucl. Instrum. Methods A 440, 360 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    G. Ranucci, A. Goretti, P. Lombardi, Nucl. Instrum. Methods A 412, 374 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    H.O. Back et al., Nucl. Instrum. Methods A 584, 98 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    G. Testera, Int. J. Mod. Phys. A 29, 1442012 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    G. Ranucci et al., Nucl. Instrum. Methods Phys. Res. A 350, 338 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    T.I. Banks et al., Nucl. Instrum. Methods Phys. Res. A 769, 88 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    S. Yoshida et al., Nucl. Instrum. Methods A 622, 574 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    G. Ranucci, Nucl. Instrum. Methods A 354, 389 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    F. Gatti, G. Morelli, G. Testera, S. Vitale, Nucl. Instrum. Methods A 370, 609 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    G. Alimonti et al., Phys. Lett. B 422, 349 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    R.B. Vogelaar et al., Nucl. Instrum. Methods Phys. Res. A 372, 59 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    I.F. Stowers, Proc. SPIE 3782, 525 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    I.F. Stowers, D.L. Ravizza, The particle cleanliness validation system, in 48th Annual Technical Meeting of the Institute of Environmental Sciences and Technology (Lawrence Livermore National Laboratory)Google Scholar
  43. 43.
    W.F. McDonough, S.S. Sun, Chem. Geol. 120, 223 (1995)CrossRefGoogle Scholar
  44. 44.
    ASTM_International, Standard practice for cleaning, descaling, and passivation of stainless steel parts, equipment, and systems (2006)Google Scholar
  45. 45.
    Barbara Kanegsberg, Edward Kanegsberg, Handbook for Critical Cleaning (CRC, Boca Raton, FL, 2001)Google Scholar
  46. 46.
    A. Pocar, AIP Conf. Proc. 785, 153 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    M. Leung, The Borexino Solar Neutrino Experiment: Scintillator Purification and Surface Contamination, Thesis (2006)Google Scholar
  48. 48.
    C. Galbiati et al., Phys. Rev. C 71, 055805 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    J. Benziger et al., Nucl. Instrum. Methods A 582, 509 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    R.G. Van de Water et al., Aip Conf. Proc. 540, 193 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    J. Benziger et al., Nucl. Instrum. Methods A 587, 277 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    G. Alimonti et al., Nucl. Instrum. Methods A 600, 568 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    KamLand Collaboration (Y. Kishimoto), J. Phys. Conf. Ser. 120, 052010 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    G. Keefer et al., Nucl. Instrum. Methods A 769, 79 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    R. Ford et al., AIP Conf. Proc. 1338, 183 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    H. Simgen, G. Zuzel, AIP Conf. PRoc. 897, 45 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    H.O. Back et al., Nucl. Instrum. Methods A 585, 48 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    for the S.N.O. Collaboration (V. Lozza), J. Phys. Conf. Ser. 375, 042050 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    M. Pallavicini et al., J. Phys. Conf. Ser. 120, 052017 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    A. Ianni, M. Pallavicini, Int. J. Mod. Phys. A 29, 1442011 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    G. Bellini et al., Phys. Rev. D 82, 033006 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    C. Arpesella, Phys. Rev. Lett. 101, 091302 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    G. Bellini et al., Phys. Rev. Lett. 108, 051302 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    G. Bellini et al., Phys. Rev. D 89, 112007 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    G. Bellini et al., Nature 512, 383 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Princeton University PrincetonPrincetonUSA

Personalised recommendations