Advertisement

Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

  • Tayfun Hüyük
  • Antonio Di Nitto
  • Grzegorz Jaworski
  • Andrés Gadea
  • José Javier Valiente-Dobón
  • Johan Nyberg
  • Marcin Palacz
  • Pär-Anders Söderström
  • Ramon Jose Aliaga-Varea
  • Giacomo de Angelis
  • Ayşe Ataç
  • Javier Collado
  • Cesar Domingo-Pardo
  • Francisco Javier Egea
  • Nizamettin Erduran
  • Sefa Ertürk
  • Gilles de France
  • Rafael Gadea
  • Vicente González
  • Vicente Herrero-Bosch
  • Ayşe Kaşkaş
  • Victor Modamio
  • Marek Moszynski
  • Enrique Sanchis
  • Andrea Triossi
  • Robert Wadsworth
Special Article - Tools for Experiment and Theory

Abstract.

The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large \( \gamma\)-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron-\( \gamma\) discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

References

  1. 1.
    B. Cederwall et al., Nature 469, 68 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Ö. Skeppstedt et al., Nucl. Instrum. Methods Phys. Res. A 421, 531 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    J. Ljungvall et al., Nucl. Instrum. Methods Phys. Res. A 528, 741 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    D. Sarantites et al., Nucl. Instrum. Methods Phys. Res. A 530, 473 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    F.J. Egea Canet et al., IEEE Trans. Nucl. Sci. 62, 1056 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    F.J. Egea Canet et al., IEEE Trans. Nucl. Sci. 62, 1063 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    V. Modamio et al., Nucl. Instrum. Methods Phys. Res. A 775, 71 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    F.J. Egea et al., IEEE Trans. Nucl. Sci. 60, 3526 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. A 594, 79 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Luo et al., Nucl. Instrum. Methods Phys. Res. A 767, 83 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    G. Jaworski et al., Nucl. Instrum. Methods Phys. Res. A 673, 64 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J. Simpson et al., Acta Phys. Hung. 11, 159 (2000)Google Scholar
  14. 14.
    J.J. Valiente-Dobon, Status of the Gamma-Ray Spectrometer GALILEO, in Annual Report 2014 (LNL, INFN, 2015) pp 95--96Google Scholar
  15. 15.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    E. Farnea et al., Nucl. Instrum. Methods Phys. Res. A 621, 331 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    P.R.P. Coelho et al., Nucl. Instrum. Methods Phys. Res. A 280, 270 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    J. Gomez del Campo, R.G. Stockstad, Oak Ridge National Laboratory Report No. TM7295 (1981) unpublishedGoogle Scholar
  19. 19.
    A. Di Nitto et al., Eur. Phys. J. A 47, 83 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    R. Moro et al., Eur. Phys. J. A 48, 159 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    J. Simpson, Z. Phys. A 358, 139 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    A. Di Nitto et al., J. Phys. Conf. Ser. 267, 012053 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J. Cederkäll et al., Nucl. Instrum. Methods Phys. Res. A 385, 166 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    W.W.T. Crane, G.H. Higgins, S.G. Thompson, Phys. Rev. 97, 242 (1955)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tayfun Hüyük
    • 1
  • Antonio Di Nitto
    • 2
    • 3
  • Grzegorz Jaworski
    • 4
  • Andrés Gadea
    • 1
  • José Javier Valiente-Dobón
    • 4
  • Johan Nyberg
    • 6
  • Marcin Palacz
    • 5
  • Pär-Anders Söderström
    • 7
  • Ramon Jose Aliaga-Varea
    • 1
    • 8
  • Giacomo de Angelis
    • 4
  • Ayşe Ataç
    • 9
    • 10
  • Javier Collado
    • 11
  • Cesar Domingo-Pardo
    • 1
  • Francisco Javier Egea
    • 11
  • Nizamettin Erduran
    • 12
  • Sefa Ertürk
    • 13
  • Gilles de France
    • 14
  • Rafael Gadea
    • 8
  • Vicente González
    • 11
  • Vicente Herrero-Bosch
    • 8
  • Ayşe Kaşkaş
    • 9
  • Victor Modamio
    • 4
  • Marek Moszynski
    • 15
  • Enrique Sanchis
    • 11
  • Andrea Triossi
    • 4
  • Robert Wadsworth
    • 16
  1. 1.Instituto de Física Corpuscular, CSICUniversidad de ValenciaPaterna (Valencia)Spain
  2. 2.Istituto Nazionale di Fisica NucleareSezione di NapoliNapoliItaly
  3. 3.Johannes Gutenberg-Universität MainzMainzGermany
  4. 4.Istituto Nazionale di Fisica NucleareLaboratori Nazionali di LegnaroLegnaro (PD)Italy
  5. 5.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland
  6. 6.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  7. 7.RIKEN Nishina CenterSaitamaJapan
  8. 8.I3MUniversidad Politécnica de ValenciaValenciaSpain
  9. 9.Department of Physics, Faculty of SciencesAnkara UniversityAnkaraTurkey
  10. 10.The Royal Institute of TechnologyStockholmSweden
  11. 11.Department of Electronic EngineeringUniversity of ValenciaBurjassot (Valencia)Spain
  12. 12.Faculty of Engineering and Natural SciencesIstanbul Sabahattin Zaim UniversityIstanbulTurkey
  13. 13.Department of Physics, Faculty of Science and ArtsUniversity of NigdeNiğdeTurkey
  14. 14.GANIL, CEA/DSAMCNRS/IN2P3CaenFrance
  15. 15.National Centre for Nuclear ResearchOtwock-SwierkPoland
  16. 16.Department of PhysicsUniversity of YorkYorkUK

Personalised recommendations