New fixed points of the renormalisation group for two-body scattering

Regular Article - Theoretical Physics


We outline a separable matrix ansatz for the potentials in effective field theories of non-relativistic two-body systems with short-range interactions. We use this ansatz to construct new fixed points of the renormalisation-group equation for these potentials. New fixed points indicate a much richer structure than previously recognized in the RG flows of simple short-range potentials.


Renormalisation Group Equation Power Counting Critical Surface Renormalisation Group Analysis Functional Renormalisation Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974)CrossRefADSGoogle Scholar
  2. 2.
    T.R. Morris, Prog. Theor. Phys. Suppl. 131, 395 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Y. Meurice, R. Perry, S.-W. Tsai (Editors), New applications of the renormalization group in nuclear, particle and condensed matter physics, in Philosophuical Transactions of the Royal Society of London A, Vol. 369 (The Royal Society, 2011)Google Scholar
  4. 4.
    S. Weinberg, Nucl. Phys. B 363, 3 (1991)CrossRefADSGoogle Scholar
  5. 5.
    J. Gegelia, Phys. Lett. B 429, 227 (1998)CrossRefADSGoogle Scholar
  6. 6.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)CrossRefADSGoogle Scholar
  7. 7.
    U. van Kolck, Nucl. Phys. A 645, 273 (1999)CrossRefADSGoogle Scholar
  8. 8.
    M.C. Birse, J.A. McGovern, K.G. Richardson, Phys. Lett. B 464, 169 (1999)CrossRefADSMathSciNetMATHGoogle Scholar
  9. 9.
    H.A. Bethe, Phys. Rev. 76, 38 (1949)CrossRefADSMATHGoogle Scholar
  10. 10.
    M.C. Birse, Phil. Trans. R. Soc. London A 369, 2662 (2011)CrossRefADSMathSciNetMATHGoogle Scholar
  11. 11.
    T.D. Cohen, private communicationGoogle Scholar
  12. 12.
    K. Harada, H. Kubo, Nucl. Phys. B 758, 304 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    K. Harada, H. Kubo, A. Ninomiya, Int. J. Mod. Phys. A 24, 3191 (2009)CrossRefADSMATHGoogle Scholar
  14. 14.
    S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)CrossRefADSGoogle Scholar
  15. 15.
    T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Theoretical Physics Division, School of Physics and AstronomyThe University of ManchesterManchesterUK
  2. 2.Institut für Theoretische Physik II, Fakultät für Physik und AstronomieRuhr-Universität BochumBochumGermany
  3. 3.Institute for Advanced Simulation, Institut für KernphysikJülich Center for Hadron Physics, Forschungszentrum JülichJülichGermany
  4. 4.Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations