Neutron star radii, universal relations, and the role of prior distributions

  • A. W. Steiner
  • J. M. Lattimer
  • E. F. Brown
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Exotic Matter in Neutron Stars


We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of \( 1.4 M_{\odot}\) neutron stars to be larger than 10km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.


Neutron Star Prior Distribution Symmetry Energy Neutron Matter Neutron Star Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSMATHCrossRefGoogle Scholar
  3. 3.
    A.G.W. Cameron, Astrophys. J. 130, 884 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    T.H.R. Skyrme, Nucl. Phys. 9, 615 (1959)MATHCrossRefGoogle Scholar
  5. 5.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P. Ellis, Phys. Rep. 411, 325 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    E.S. Phinney, S.R. Kulkarni, Annu. Rev. Astron. Astrophys. 32, 591 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W. Verbiest, D.G. Whelan, Science 340, 1233232 (2013)CrossRefGoogle Scholar
  9. 9.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    J. van Paradijs, Astrophys. J. 234, 609 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    F. Ozel, Nature 441, 1115 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    T. Güver, F. Özel, A. Cabrera-Lavers, P. Wroblewski, Astrophys. J. 712, 964 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    T. Güver, P. Wroblewski, L. Camarota, F. Özel, Astrophys. J. 719, 1807 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    F. Özel, T. Güver, D. Psaltis, Astrophys. J. 693, 1775 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. van Paradijs, F. Verbunt, R.A. Shafer, K.A. Arnaud, Astron. Astrophys. 182, 47 (1987)ADSGoogle Scholar
  17. 17.
    L. Bildsten, E.E. Salpeter, I. Wasserman, Astrophys. J. 384, 143 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    R. Rutledge, L. Bildsten, E. Brown, G. Pavlov, E. Zavlin, Astrophys. J. 514, 945 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    M. Rajagopal, R.W. Romani, Astrophys. J. 461, 327 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    V.E. Zavlin, G.G. Pavlov, Y.A. Shibanov, Astron. Astrophys. 315, 141 (1996)ADSGoogle Scholar
  21. 21.
    C.O. Heinke, G.B. Rybicki, R. Narayan, J.E. Grindlay, Astrophys. J. 644, 1090 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    N.A. Webb, D. Barret, Astrophys. J. 671, 727 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    L. Lindblom, Astrophys. J. 398, 569 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    L. Lindblom, N.M. Indik, Phys. Rev. D 89, 064003 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    F. Özel, D. Psaltis, Phys. Rev. D 80, 103003 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Read, B.D. Lackey, B.J. Owen, J.L. Friedman, Phys. Rev. D 79, 124032 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Eriguchi, E. Mueller, Astron. Astrophys. 146, 260 (1985)ADSMATHGoogle Scholar
  29. 29.
    F. Özel, G. Baym, T. Güver, Phys. Rev. D 82, 101301 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Phys. Scr. T 56, 231 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    V. Suleimanov, J. Poutanen, K. Werner, Astron. Astrophys. 527, A139 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M. Servillat, C.O. Heinke, W.C.G. Ho, J.E. Grindlay, J. Homg, M. van den Berg, S. Bogdanov, Mon. Not. R. Astron. Soc. 423, 1556 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. Lett. 765, 5 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Lattimer, A.W. Steiner, Eur. Phys. J. A 50, 40 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    C.O. Heinke, H.N. Cohn, P.M. Lugger, N.A. Webb, W.C.G. Ho, J. Anderson, S. Campana, S. Bogdanov, D. Haggard, A.M. Cool, J.E. Grindlay, Mon. Not. R. Astron. Soc. 444, 443 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    A.W. Steiner, J. Phys. G 42, 034004 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    F. Ozel, D. Psaltis, T. Güver, G. Baym, C. Heinke, S. Guillot, arXiv:1505.05155 (2015)
  42. 42.
    S. Guillot, R.E. Rutledge, Astrophys. J. Lett. 796, L3 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    A.W. Steiner, S. Gandolfi, F.J. Fattoyev, W.G. Newton, Phys. Rev. C 91, 015804 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    J. Nättilä, A.W. Steiner, J.J.E. Kajava, V.F. Suleimanov, J. Poutanen, arXiv:1509.06561 (2015)
  45. 45.
    F. Özel, D. Psaltis, Astrophys. J. 810, 135 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, in Bayesian Data Analysis, 3rd edition (CRC Press, Boca Raton, 2014) chapt. 1Google Scholar
  47. 47.
    S. Typel, B.A. Brown, Phys. Rev. C 64, 027302 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    K. Yagi, N. Yunes, Science 341, 365 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)ADSCrossRefGoogle Scholar
  51. 51.
    S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    C. Drischler, V. Soma, A. Schwenk, Phys. Rev. C 89, 025806 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    S. Koranda, N. Stergioulas, J.L. Friedman, Astrophys. J. 488, 799 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973)ADSCrossRefGoogle Scholar
  55. 55.
    A.W. Steiner, Astrophysics Source Code Library, 2014, record ascl:1408.020Google Scholar
  56. 56.
    A.W. Steiner, Astrophysics Source Code Library, 2014, record ascl:1408.019Google Scholar
  57. 57.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    J.M. Lattimer, M. Prakash, in From Nuclei To Stars: Festschrift in Honor of Gerald E Brown (World Scientific, Singapore, 2011) chapt. 12, arXiv:1012.3208
  59. 59.
    M.G. Alford, G.F. Burgio, S. Han, G. Taranto, D. Zappalà, Phys. Rev. D 92, 083002 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    P. Bedaque, A.W. Steiner, Phys. Rev. Lett. 114, 031103 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    W.-C. Chen, J. Piekarewicz, Phys. Rev. Lett. 115, 161101 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    J.M. Lattimer, A. Yahil, Astrophys. J. 340, 426 (1989)ADSCrossRefGoogle Scholar
  63. 63.
    J.M. Lattimer, B.F. Schutz, Astrophys. J. 629, 979 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    R.J. Furnstahl, D.R. Phillips, S. Wesolowski, J. Phys. G 42, 034028 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. W. Steiner
    • 1
    • 2
  • J. M. Lattimer
    • 3
  • E. F. Brown
    • 4
    • 5
    • 6
  1. 1.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  2. 2.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Dept. of Physics & AstronomyStony Brook UniversityStony BrookUSA
  4. 4.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  5. 5.The Joint Institute for Nuclear Astrophysics-Center for the Evolution of the ElementsMichigan State UniversityEast LansingUSA
  6. 6.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations