Skip to main content
Log in

1S0 nucleon-nucleon scattering in the modified Weinberg approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nucleon-nucleon scattering in the 1 S 0 partial wave is considered in chiral effective field theory within the renormalizable formulation of a previous work (Phys. Lett. B 716, 338 (2012)) beyond the leading-order approximation. By applying subtractive renormalization, the subleading contact interaction in this channel is taken into account non-perturbatively. For a proper choice of renormalization conditions, the predicted energy dependence of the phase shift and the coefficients in the effective range expansion are found to be in a good agreement with the results of the Nijmegen partial wave analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Weinberg, Nucl. Phys. B 363, 3 (1991).

    Article  ADS  Google Scholar 

  3. C. Ordonez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086 (1996) hep-ph/9511380.

    Article  ADS  Google Scholar 

  4. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009) arXiv:0811.1338 [nucl-th].

    Article  ADS  Google Scholar 

  5. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011) arXiv:1105.2919 [nucl-th].

    Article  ADS  Google Scholar 

  6. E. Epelbaum, U.-G. Meißner, Annu. Rev. Nucl. Part. Sci. 62, 159 (2012) arXiv:1201.2136 [nucl-th].

    Article  ADS  Google Scholar 

  7. M.J. Savage, in Nuclear physics with effective field theory: Proceedings of the joint Caltech/INT workshop, Vol. 6 (Pasadena, 1998) pp. 247-267, nucl-th/9804034.

  8. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005) nucl-th/0506005.

    Article  ADS  Google Scholar 

  9. M. Pavon Valderrama, E. Ruiz Arriola, Phys. Rev. C 72, 054002 (2005) nucl-th/0504067.

    Article  ADS  Google Scholar 

  10. E. Epelbaum, J. Gegelia, Eur. Phys. J. A 41, 341 (2009) arXiv:0906.3822 [nucl-th].

    Article  ADS  Google Scholar 

  11. C. Zeoli, R. Machleidt, D.R. Entem, Few-Body Syst. 54, 2191 (2013) arXiv:1208.2657 [nucl-th].

    Article  ADS  Google Scholar 

  12. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998).

    Article  ADS  Google Scholar 

  13. J. Gegelia, nucl-th/9806028.

  14. T.D. Cohen, J.M. Hansen, Phys. Rev. C 59, 13 (1999) nucl-th/9808038.

    Article  ADS  Google Scholar 

  15. J. Gegelia, Phys. Lett. B 463, 133 (1999) nucl-th/9908055.

    Article  ADS  Google Scholar 

  16. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000) nucl-th/9911001.

    Article  ADS  Google Scholar 

  17. G.P. Lepage, nucl-th/9706029.

  18. J. Gegelia, J. Phys. G 25, 1681 (1999) nucl-th/9805008.

    Article  ADS  Google Scholar 

  19. J. Gegelia, S. Scherer, Int. J. Mod. Phys. A 21, 1079 (2006) nucl-th/0403052.

    Article  ADS  Google Scholar 

  20. E. Epelbaum, U.-G. Meißner, Few-Body Syst. 54, 2175 (2013) nucl-th/0609037.

    Article  ADS  Google Scholar 

  21. J. Mondejar, J. Soto, Eur. Phys. J. A 32, 77 (2007) nucl-th/0612051.

    Article  ADS  Google Scholar 

  22. B. Long, U. van Kolck, Ann. Phys. 323, 1304 (2008) arXiv:0707.4325 [quant-ph].

    Article  MATH  ADS  Google Scholar 

  23. C.-J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 044002 (2009) arXiv:0905.4943 [nucl-th].

    Article  ADS  Google Scholar 

  24. M.C. Birse, arXiv:1012.4914 [nucl-th].

  25. M.P. Valderrama, Phys. Rev. C 83, 024003 (2011) arXiv:0912.0699 [nucl-th].

    Article  ADS  Google Scholar 

  26. M. Pavon Valderrama, Phys. Rev. C 84, 064002 (2011) arXiv:1108.0872 [nucl-th].

    Article  ADS  Google Scholar 

  27. B. Long, C.J. Yang, Phys. Rev. C 85, 034002 (2012) arXiv:1111.3993 [nucl-th].

    Article  ADS  Google Scholar 

  28. B. Long, C.J. Yang, Phys. Rev. C 86, 024001 (2012) arXiv:1202.4053 [nucl-th].

    Article  ADS  Google Scholar 

  29. B. Long, Phys. Rev. C 88, 014002 (2013) arXiv:1304.7382 [nucl-th].

    Article  ADS  Google Scholar 

  30. S.R. Beane, D.B. Kaplan, A. Vuorinen, Phys. Rev. C 80, 011001 (2009) arXiv:0812.3938 [nucl-th].

    Article  ADS  Google Scholar 

  31. A.M. Gasparyan, M.F.M. Lutz, E. Epelbaum, Eur. Phys. J. A 49, 115 (2013) arXiv:1212.3057 [nucl-th].

    Article  ADS  Google Scholar 

  32. A.M. Gasparyan, M.F.M. Lutz, E. Epelbaum, PoS CD 12, 089 (2013).

    Google Scholar 

  33. E. Epelbaum, J. Gegelia, Phys. Lett. B 716, 338 (2012) arXiv:1207.2420 [nucl-th].

    Article  ADS  Google Scholar 

  34. E. Epelbaum, J. Gegelia, PoS CD 12, 090 (2013) arXiv:1301.6134 [nucl-th].

    Google Scholar 

  35. E. Epelbaum, J. Gegelia, Few-Body Syst. 54, 1473 (2013).

    Article  ADS  Google Scholar 

  36. E. Epelbaum, A.M. Gasparyan, J. Gegelia, M.R. Schindler, Eur. Phys. J. A 50, 51 (2014) arXiv:1311.7164 [nucl-th].

    Article  ADS  Google Scholar 

  37. V.G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).

    Article  ADS  Google Scholar 

  38. E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51, 53 (2015) arXiv:1412.0142 [nucl-th].

    Article  ADS  Google Scholar 

  39. E. Epelbaum, H. Krebs, U.-G. Meißner, arXiv:1412.4623 [nucl-th].

  40. J. Gegelia, G. Japaridze, Phys. Lett. B 517, 476 (2001) nucl-th/0108005.

    Article  ADS  Google Scholar 

  41. J.C. Collins, Renormalization. An introduction to renormalization, the renormalization group, and the operator product expansion, (Cambridge University Press, Cambridge 1984).

  42. J. Gegelia, Phys. Lett. B 429, 227 (1998).

    Article  ADS  Google Scholar 

  43. V.G.J. Stoks et al., Phys. Rev. C 48, 792 (1993).

    Article  ADS  Google Scholar 

  44. E. Epelbaum, U.G. Meissner, W. Gloeckle, C. Elster, Phys. Rev. C 65, 044001 (2002) nucl-th/0106007.

    Article  ADS  Google Scholar 

  45. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994) nucl-th/9406039.

    Article  ADS  Google Scholar 

  46. M. Pavon Valderrama, E. Ruiz Arriola, Phys. Rev. C 72, 044007 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gegelia.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epelbaum, E., Gasparyan, A.M., Gegelia, J. et al. 1S0 nucleon-nucleon scattering in the modified Weinberg approach. Eur. Phys. J. A 51, 71 (2015). https://doi.org/10.1140/epja/i2015-15071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15071-6

Keywords

Navigation