Skip to main content
Log in

Pairing gaps and Fermi energies at scission for 296Lv alpha-decay

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The pairing corrections, the single particle occupation numbers, are investigated within density-dependent delta interaction formalism for pairing residual interactions. The potential barrier is computed in the framework of the macroscopic-microscopic model. The microscopic part is based on the Woods-Saxon two-center shell model. The α-decay of a superheavy element is treated by paying special attention to the region of the scission configurations. The sequence of nuclear shapes follows the superasymmetric fission path for alpha-decay. It was found that the pairing gaps of the states that reach asymptotically the potential well of the alpha particle have large values at scission but become zero after scission. The 1s1/2 single particle levels of the nascent α particle are fully occupied while the superior levels are empty in the scission region and remain in the same states during the penetration of the Coulomb barrier. The projection of the numbers of particle on the two fragments is obtained naturally. At scission, the nascent α particle forms a very bound cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Younes, D. Gogny, Phys. Rev. Lett. 107, 132501 (2011).

    Article  ADS  Google Scholar 

  2. W. Warda, J.L. Egido, Phys. Rev. C 86, 014322 (2012).

    Article  ADS  Google Scholar 

  3. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601 (2014).

    Article  ADS  Google Scholar 

  4. B.N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 85, 011301 (2012).

    Article  ADS  Google Scholar 

  5. A. Sandulescu, M. Mirea, D.S. Delion, EPL 101, 62001 (2013).

    Article  ADS  Google Scholar 

  6. M. Mirea, Phys. Rev. C 78, 044618 (2008).

    Article  ADS  Google Scholar 

  7. J.R. Nix, Annu. Rev. Nucl. Sci. 22, 65 (1972).

    Article  ADS  Google Scholar 

  8. W.J. Swiatecki, S. Bjornholm, Phys. Rep. 4, 325 (1972).

    Article  ADS  Google Scholar 

  9. V.Yu. Denisov, Phys. Rev. C 89, 044604 (2014).

    Article  ADS  Google Scholar 

  10. P. Moller, J.R. Nix, W.D. Myer, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  11. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  12. K. Pomorski, F. Ivanyuk, Int. J. Mod. Phys. E 18, 900 (2009).

    Article  ADS  Google Scholar 

  13. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 81, 1 (1966).

    Article  Google Scholar 

  14. B. Nerlo Pomorska, K. Pomorski, Int. J. Mod. Phys. E 16, 328 (2007).

    Article  ADS  Google Scholar 

  15. M. Mirea, Phys. Rev. C 54, 302 (1996).

    Article  ADS  Google Scholar 

  16. M. Mirea, Nucl. Phys. A 780, 13 (2006).

    Article  ADS  Google Scholar 

  17. J. Maruhn, W. Greiner, Z. Phys. 251, 431 (1972).

    Article  ADS  Google Scholar 

  18. L.-S. Geng, J. Meng, T. Hiroshi, Chin. Phys. Lett. 24, 1865 (2007).

    Article  ADS  Google Scholar 

  19. A. Diaz-Torres, W. Scheid, Nucl. Phys. A 757, 373 (2005).

    Article  ADS  Google Scholar 

  20. A. Diaz-Torres, Phys. Rev. Lett. 101, 122501 (2008).

    Article  ADS  Google Scholar 

  21. V.A. Nesterov, Phys. At. Nucl. 76, 577 (2013).

    Article  Google Scholar 

  22. Q. Sun, D.-H. Shangguan, J.-D. Bao, Chin. Phys. C 37, 014102 (2013).

    Article  ADS  Google Scholar 

  23. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Few-Body Syst. 53, 271 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Sandulescu, M. Mirea, Eur. Phys. J. A 50, 110 (2014).

    Article  ADS  Google Scholar 

  25. A. Sandulescu, M. Mirea, Rom. Rep. Phys. 65, 688 (2013).

    Google Scholar 

  26. M. Mirea, Phys. Rev. C 63, 034603 (2001).

    Article  ADS  Google Scholar 

  27. M. Mirea, Rom. J. Phys. 60, 156 (2015).

    Google Scholar 

  28. M. Mirea, Phys. Rev. C 83, 054608 (2011).

    Article  ADS  Google Scholar 

  29. M. Mirea, Phys. Lett. B 717, 252 (2012).

    Article  ADS  Google Scholar 

  30. M. Mirea, Phys. Rev. C 89, 034623 (2014).

    Article  ADS  Google Scholar 

  31. R.R. Chasman, Phys. Rev. C 14, 1935 (1976).

    Article  ADS  Google Scholar 

  32. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge, Phys. Rev. C 53, 2809 (1996).

    Article  ADS  Google Scholar 

  33. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000).

    Article  ADS  Google Scholar 

  34. S. Yoshida, H. Sagawa, Phys. Rev. C 77, 054308 (2008).

    Article  ADS  Google Scholar 

  35. N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, M.S. Weiss, Nucl. Phys. A 551, 434 (1993).

    Article  ADS  Google Scholar 

  36. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  37. P. Moller, J.R. Nix, K.-L. Kratz, At. Data. Nucl. Data. Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  38. J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, A. Baran, Phys. Rev. C 90, 061304 (2014).

    Article  ADS  Google Scholar 

  39. Ren Zhong-zhou, Xu Gong-ou, Phys. Rev. C 36, 456 (1987).

    Article  ADS  Google Scholar 

  40. M. Avrigeanu, A.C. Obreja, F.L. Roman, V. Avrigeanu, W. von Oertzen, At. Data Nucl. Data Tables 95, 501 (2009).

    Article  ADS  Google Scholar 

  41. A.I. Budaca, I. Silisteanu, Phys. Rev. C 88, 044618 (2013).

    Article  ADS  Google Scholar 

  42. K.P. Santhosh, J.G. Joseph, B. Priyanka, S. Sahadevan, J. Phys. G 38, 075101 (2011).

    Article  ADS  Google Scholar 

  43. R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Phys. Rep. 294, 265 (1998).

    Article  ADS  Google Scholar 

  44. P. Mohr, Eur. Phys. J. A 31, 23 (2007).

    Article  ADS  Google Scholar 

  45. N.G. Kelkar, H.M. Castaneda, M. Nowakowski, EPL 85, 20006 (2009).

    Article  ADS  Google Scholar 

  46. N. Carjan, A. Sandulescu, V.V. Pashkevich, Phys. Rev. C 11, 782 (1975).

    Article  ADS  Google Scholar 

  47. Yuejiao Ren, Zhongzhou Ren, Phys. Rev. C 85, 044608 (2012).

    Article  Google Scholar 

  48. H.J. Mang, Phys. Rev. 119, 1069 (1960).

    Article  ADS  Google Scholar 

  49. A. Sandulescu, Nucl. Phys. 37, 332 (1962).

    Article  MATH  Google Scholar 

  50. Dongdong Ni, Zhongzhou Ren, Phys. Rev. C 86, 054608 (2012).

    Article  Google Scholar 

  51. D.N. Poenaru, W. Greiner, J. Phys. G 17, S443 (1991).

    Article  ADS  Google Scholar 

  52. A. Zdeb, M. Warda, K. Pomorski, Phys. Rev. C 87, 024308 (2013).

    Article  ADS  Google Scholar 

  53. G. Ropke, P. Schuck, Y. Funaki, H. Horiuchi, Zhongzhou Ren, A. Tohsaki, Chang Xu, T. Yamada, Bo Zhou, Phys. Rev. C 90, 034304 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mirea.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirea, M. Pairing gaps and Fermi energies at scission for 296Lv alpha-decay. Eur. Phys. J. A 51, 36 (2015). https://doi.org/10.1140/epja/i2015-15036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15036-9

Keywords

Navigation