Advertisement

Pairing gaps and Fermi energies at scission for 296Lv alpha-decay

  • M. Mirea
Regular Article - Theoretical Physics

Abstract

The pairing corrections, the single particle occupation numbers, are investigated within density-dependent delta interaction formalism for pairing residual interactions. The potential barrier is computed in the framework of the macroscopic-microscopic model. The microscopic part is based on the Woods-Saxon two-center shell model. The α-decay of a superheavy element is treated by paying special attention to the region of the scission configurations. The sequence of nuclear shapes follows the superasymmetric fission path for alpha-decay. It was found that the pairing gaps of the states that reach asymptotically the potential well of the alpha particle have large values at scission but become zero after scission. The 1s1/2 single particle levels of the nascent α particle are fully occupied while the superior levels are empty in the scission region and remain in the same states during the penetration of the Coulomb barrier. The projection of the numbers of particle on the two fragments is obtained naturally. At scission, the nascent α particle forms a very bound cluster.

Keywords

Scission Fermi Energy Alpha Particle Daughter Nucleus Single Particle State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Younes, D. Gogny, Phys. Rev. Lett. 107, 132501 (2011).CrossRefADSGoogle Scholar
  2. 2.
    W. Warda, J.L. Egido, Phys. Rev. C 86, 014322 (2012).CrossRefADSGoogle Scholar
  3. 3.
    C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601 (2014).CrossRefADSGoogle Scholar
  4. 4.
    B.N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 85, 011301 (2012).CrossRefADSGoogle Scholar
  5. 5.
    A. Sandulescu, M. Mirea, D.S. Delion, EPL 101, 62001 (2013).CrossRefADSGoogle Scholar
  6. 6.
    M. Mirea, Phys. Rev. C 78, 044618 (2008).CrossRefADSGoogle Scholar
  7. 7.
    J.R. Nix, Annu. Rev. Nucl. Sci. 22, 65 (1972).CrossRefADSGoogle Scholar
  8. 8.
    W.J. Swiatecki, S. Bjornholm, Phys. Rep. 4, 325 (1972).CrossRefADSGoogle Scholar
  9. 9.
    V.Yu. Denisov, Phys. Rev. C 89, 044604 (2014).CrossRefADSGoogle Scholar
  10. 10.
    P. Moller, J.R. Nix, W.D. Myer, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).CrossRefADSGoogle Scholar
  11. 11.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972).CrossRefADSGoogle Scholar
  12. 12.
    K. Pomorski, F. Ivanyuk, Int. J. Mod. Phys. E 18, 900 (2009).CrossRefADSGoogle Scholar
  13. 13.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 81, 1 (1966).CrossRefGoogle Scholar
  14. 14.
    B. Nerlo Pomorska, K. Pomorski, Int. J. Mod. Phys. E 16, 328 (2007).CrossRefADSGoogle Scholar
  15. 15.
    M. Mirea, Phys. Rev. C 54, 302 (1996).CrossRefADSGoogle Scholar
  16. 16.
    M. Mirea, Nucl. Phys. A 780, 13 (2006).CrossRefADSGoogle Scholar
  17. 17.
    J. Maruhn, W. Greiner, Z. Phys. 251, 431 (1972).CrossRefADSGoogle Scholar
  18. 18.
    L.-S. Geng, J. Meng, T. Hiroshi, Chin. Phys. Lett. 24, 1865 (2007).CrossRefADSGoogle Scholar
  19. 19.
    A. Diaz-Torres, W. Scheid, Nucl. Phys. A 757, 373 (2005).CrossRefADSGoogle Scholar
  20. 20.
    A. Diaz-Torres, Phys. Rev. Lett. 101, 122501 (2008).CrossRefADSGoogle Scholar
  21. 21.
    V.A. Nesterov, Phys. At. Nucl. 76, 577 (2013).CrossRefGoogle Scholar
  22. 22.
    Q. Sun, D.-H. Shangguan, J.-D. Bao, Chin. Phys. C 37, 014102 (2013).CrossRefADSGoogle Scholar
  23. 23.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Few-Body Syst. 53, 271 (2012).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    A. Sandulescu, M. Mirea, Eur. Phys. J. A 50, 110 (2014).CrossRefADSGoogle Scholar
  25. 25.
    A. Sandulescu, M. Mirea, Rom. Rep. Phys. 65, 688 (2013).Google Scholar
  26. 26.
    M. Mirea, Phys. Rev. C 63, 034603 (2001).CrossRefADSGoogle Scholar
  27. 27.
    M. Mirea, Rom. J. Phys. 60, 156 (2015).Google Scholar
  28. 28.
    M. Mirea, Phys. Rev. C 83, 054608 (2011).CrossRefADSGoogle Scholar
  29. 29.
    M. Mirea, Phys. Lett. B 717, 252 (2012).CrossRefADSGoogle Scholar
  30. 30.
    M. Mirea, Phys. Rev. C 89, 034623 (2014).CrossRefADSGoogle Scholar
  31. 31.
    R.R. Chasman, Phys. Rev. C 14, 1935 (1976).CrossRefADSGoogle Scholar
  32. 32.
    J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge, Phys. Rev. C 53, 2809 (1996).CrossRefADSGoogle Scholar
  33. 33.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000).CrossRefADSGoogle Scholar
  34. 34.
    S. Yoshida, H. Sagawa, Phys. Rev. C 77, 054308 (2008).CrossRefADSGoogle Scholar
  35. 35.
    N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, M.S. Weiss, Nucl. Phys. A 551, 434 (1993).CrossRefADSGoogle Scholar
  36. 36.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  37. 37.
    P. Moller, J.R. Nix, K.-L. Kratz, At. Data. Nucl. Data. Tables 66, 131 (1997).CrossRefADSGoogle Scholar
  38. 38.
    J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, A. Baran, Phys. Rev. C 90, 061304 (2014).CrossRefADSGoogle Scholar
  39. 39.
    Ren Zhong-zhou, Xu Gong-ou, Phys. Rev. C 36, 456 (1987).CrossRefADSGoogle Scholar
  40. 40.
    M. Avrigeanu, A.C. Obreja, F.L. Roman, V. Avrigeanu, W. von Oertzen, At. Data Nucl. Data Tables 95, 501 (2009).CrossRefADSGoogle Scholar
  41. 41.
    A.I. Budaca, I. Silisteanu, Phys. Rev. C 88, 044618 (2013).CrossRefADSGoogle Scholar
  42. 42.
    K.P. Santhosh, J.G. Joseph, B. Priyanka, S. Sahadevan, J. Phys. G 38, 075101 (2011).CrossRefADSGoogle Scholar
  43. 43.
    R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Phys. Rep. 294, 265 (1998).CrossRefADSGoogle Scholar
  44. 44.
    P. Mohr, Eur. Phys. J. A 31, 23 (2007).CrossRefADSGoogle Scholar
  45. 45.
    N.G. Kelkar, H.M. Castaneda, M. Nowakowski, EPL 85, 20006 (2009).CrossRefADSGoogle Scholar
  46. 46.
    N. Carjan, A. Sandulescu, V.V. Pashkevich, Phys. Rev. C 11, 782 (1975).CrossRefADSGoogle Scholar
  47. 47.
    Yuejiao Ren, Zhongzhou Ren, Phys. Rev. C 85, 044608 (2012).CrossRefGoogle Scholar
  48. 48.
    H.J. Mang, Phys. Rev. 119, 1069 (1960).CrossRefADSGoogle Scholar
  49. 49.
    A. Sandulescu, Nucl. Phys. 37, 332 (1962).CrossRefMATHGoogle Scholar
  50. 50.
    Dongdong Ni, Zhongzhou Ren, Phys. Rev. C 86, 054608 (2012).CrossRefGoogle Scholar
  51. 51.
    D.N. Poenaru, W. Greiner, J. Phys. G 17, S443 (1991).CrossRefADSGoogle Scholar
  52. 52.
    A. Zdeb, M. Warda, K. Pomorski, Phys. Rev. C 87, 024308 (2013).CrossRefADSGoogle Scholar
  53. 53.
    G. Ropke, P. Schuck, Y. Funaki, H. Horiuchi, Zhongzhou Ren, A. Tohsaki, Chang Xu, T. Yamada, Bo Zhou, Phys. Rev. C 90, 034304 (2014).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Horia Hulubei National Institute for Physics and Nuclear EngineeringBucharestRomania

Personalised recommendations