Advertisement

A pair spectrometer for nuclear astrophysics experiments

  • L. Guerro
  • A. Di Leva
  • L. Gialanella
  • A. Saltarelli
  • D. Schürmann
  • U. Tabassam
  • M. Busso
  • N. De Cesare
  • A. D’Onofrio
  • M. Romoli
  • F. Terrasi
Regular Article - Experimental Physics

Abstract

Non-radiative transitions in nuclear capture reactions between light nuclei play a relevant role in stellar nuclear astrophysics, where nuclear processes occur at typical energies from tens to hundreds of keV. At higher energies, instead, the E0 contributions may be shadowed by more intense transitions. The experimental study of E0 transitions requires a specific detection setup, able to uniquely identify events where an electron-positron pair is produced. A compact ΔE-E charged-particle spectrometer based on two silicon detectors has been designed to be installed in the jet gas target chamber of the recoil mass separator ERNA (European Recoil separator for Nuclear Astrophysics) at the CIRCE laboratory of Caserta, Italy. The detector design, its performances and the first foreseen applications are described.

Keywords

Monte Carlo Nuclear Astrophysics Geant4 Simulation Helium Burning Pair Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Schürmann et al., Eur. Phys. J. A 26, 301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A. Di Leva et al., Phys. Rev. Lett. 102, 232502 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. Di Leva et al., Phys. Rev. Lett. 103, 159903 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    K.A. Snover, A.E. Hurd, Phys. Rev. C 67, 055801 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    G. Baur, K.A. Snover, S. Typel, Phys. Rev. C 75, 058801 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    D. Rogalla et al., Nucl. Instrum. Methods A 437, 266 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    D. Rogalla et al., Eur. Phys. J. A 6, 471 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    D. Rogalla et al., Nucl. Instrum. Methods A 513, 573 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    L. Gialanella et al., Nucl. Instrum. Methods A 522, 432 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    D. Schürmann et al., Nucl. Instrum. Methods A 531, 428 (2004).ADSGoogle Scholar
  11. 11.
    G. Imbriani et al., Astrophys. J. 558, 903 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    I. Dominguez, P. Höflich, Astrophys. J. 528, 854 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    D. Schürmann et al., Phys. Lett. B 711, 35 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    D. Schürmann et al., Phys. Lett. B 703, 557 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K.H. Hahn, K.H. Chang, T.R. Donoghue, B.W. Filippone, Phys. Rev. C 36, 892 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    R. Kunz et al., Nucl. Phys. A 621, 149c (1997).ADSCrossRefGoogle Scholar
  18. 18.
    U. Hager et al., Phys. Rev. C 84, 022801 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    O. Straniero, private communication.Google Scholar
  20. 20.
    D. Baye, P. Descouvemont, Phys. Rev. C 38, 5 (1988).CrossRefGoogle Scholar
  21. 21.
    S.D. Bloom, Phys. Rev. 88, 312 (1952).ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Wood et al., Nucl. Phys. A 651, 323 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Montoya et al., Nucl. Instrum. Methods A 334, 437 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    W.S. Freeman et al., Nucl. Instrum. Methods 204, 445 (1983).CrossRefGoogle Scholar
  25. 25.
    W. Michaelis, D. Lange, Nucl. Instrum. Methods 58, 349 (1968).ADSCrossRefGoogle Scholar
  26. 26.
    L. Landau, J. Phys. USSR 8, 201 (1944).Google Scholar
  27. 27.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller, Nucl. Phys. A 636, 247 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    K. Spyrou et al., Z. Phys. A 357, 283 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Kalambet et al., J. Chemom. 25, 352 (2011).CrossRefGoogle Scholar
  31. 31.
    A. Gavron, Phys. Rev. C 21, 230 (1980).ADSCrossRefGoogle Scholar
  32. 32.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • L. Guerro
    • 1
    • 2
  • A. Di Leva
    • 4
    • 5
  • L. Gialanella
    • 3
    • 4
  • A. Saltarelli
    • 1
    • 2
  • D. Schürmann
    • 4
  • U. Tabassam
    • 1
    • 2
  • M. Busso
    • 2
    • 6
  • N. De Cesare
    • 3
    • 4
  • A. D’Onofrio
    • 3
    • 4
  • M. Romoli
    • 4
  • F. Terrasi
    • 3
    • 4
  1. 1.Division of Physics, School of Science and TechnologyUniversity of CamerinoCamerinoItaly
  2. 2.Sezione di PerugiaINFNPerugiaItaly
  3. 3.Department of Mathematics and PhysicsSecond University of NaplesCasertaItaly
  4. 4.INFNSezione di NapoliNapoliItaly
  5. 5.Physics DepartmentUniversity of Naples “Federico II”NaplesItaly
  6. 6.Department of PhysicsUniversity of PerugiaPerugiaItaly

Personalised recommendations