Skip to main content

Advertisement

Log in

Coulomb-nuclear potential resonances for oscillatory structure in second energy derivative of fusion cross section times energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In a nucleus-nucleus collision, resonances depicted by larger values of reaction cross section (σ R) at specific energies are generated by the combined Coulomb-nuclear potential by virtue of well-developed pocket in it. The generation of such resonance is ascertained by the peak value of phase-shift time or dwell time at the resonance energy. We extract the results of fusion cross section (σ F) from σ R in the presence of such resonances and present them in the form of a quantity D F(E) = (d2( F)/dE 2): the second energy derivative of the product of σ F and energy E. In principle the variation of the quantity D F(E) as a function of energy shows two peaks and a negative dip between them around each resonance energy stated above. There can be several resonances in a given angular momentum trajectory denoted by partial wave ℓ. Hence each ℓ would carry a number of peaks and dips for the result of D F(E) over a range of energy. These results of D F(E) from a large number of ℓs involved in a heavy-ion collision shall be added together and, after some mutual cancellation and/or addition, the final result of D F(E) will show an oscillatory structure with a large number of residual peaks and dips present over the range of energy of variation. These calculated results of D F(E) give successful explanation of the corresponding results extracted from the experimental results of σ F at different energies in the cases of heavy-ion system of reactions, namely 16O + 208Pb, 36S + 110Pd, 58Ni + 60Ni and thereby it is confirmed that peaks and dips found in the variation of D F(E) extracted from the measured results of σ F as a function of the energy are critically influenced by the potential pocket resonances generated in the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Jiang, B.B. Back, H. Esbensen, R.V.F. Janssens, K.E. Rehm, Phys. Rev. C 73, 014613 (2006).

    Article  ADS  Google Scholar 

  2. M. Dasgupta, D.J. Hinde, A. Diaz-Torres, B. Bouriquet, Catherine I. Low, G.J. Milburn, J.O. Newton, Phys. Rev. Lett. 99, 192701 (2007).

    Article  ADS  Google Scholar 

  3. C.R. Morton, A.C. Berriman, M. Dasgupta, D.J. Hinde, J.O. Newton, K. Hagino, I.J. Thompson, Phys. Rev. C 60, 044608 (1999).

    Article  ADS  Google Scholar 

  4. C.L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).

    Article  ADS  Google Scholar 

  5. C.L. Jiang, H. Esbensen, B.B. Back, R.V.F. Janssens, K.E. Rehm, Phys. Rev. C 69, 014604 (2004).

    Article  ADS  Google Scholar 

  6. C.L. Jiang et al., Phys. Rev. Lett. 93, 012701 (2004).

    Article  ADS  Google Scholar 

  7. C.L. Jiang et al., Phys. Rev. C 71, 044613 (2005).

    Article  ADS  Google Scholar 

  8. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  9. J.O. Newton, R.D. Butt, M. Dasgupta, D.J. Hinde, I.I. Gontchar, C.R. Morton, K. Hagino, Phys. Rev. C 70, 024605 (2004).

    Article  ADS  Google Scholar 

  10. H. Esbensen, C.L. Jiang, Phys. Rev. C 79, 064619 (2009).

    Article  ADS  Google Scholar 

  11. T. Udagawa, T. Tamura, Phys. Rev. C 29, 1922 (1984).

    Article  ADS  Google Scholar 

  12. B. Sahu, L. Satpathy, C.S. Shastry, Phys. Lett. A 303, 105 (2002).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Basudeb Sahu, Bidhubhusan Sahu, Int. J. Mod. Phys. E 21, 1250067 (2012).

    Article  Google Scholar 

  14. Basudeb Sahu, G.S. Mallick, B.B. Sahu, S.K. Agarwalla, C.S. Shastry, Phys. Rev. C 77, 024604 (2008).

    Article  ADS  Google Scholar 

  15. C.E. Fröberg, Rev. Mod. Phys. 27, 399 (1955).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. F. Videback, R.B. Goldstein, L. Grodzins, S.G. Steadman, T.A. Belote, J.D. Garrett, Phys. Rev. C 15, 954 (1977).

    Article  ADS  Google Scholar 

  17. J.X. Wei, J.R. Leigh, J.O. Newton, R.C. Lemmon, S. Elfstrom, J.X. Chen, N. Rowley, Phys. Rev. Lett. 67, 3368 (1991).

    Article  ADS  Google Scholar 

  18. A.M. Stefanini et al., Phys. Rev. C 52, 1727 (1995).

    Article  ADS  Google Scholar 

  19. A.M. Stefanini et al., Phys. Rev. Lett. 74, 864 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Sahu.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, B., Paira, R. Coulomb-nuclear potential resonances for oscillatory structure in second energy derivative of fusion cross section times energy. Eur. Phys. J. A 50, 152 (2014). https://doi.org/10.1140/epja/i2014-14152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14152-4

Keywords

Navigation