Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium

  • P. Belli
  • R. Bernabei
  • F. Cappella
  • V. Caracciolo
  • R. Cerulli
  • F. A. Danevich
  • A. Di Marco
  • A. Incicchitti
  • D. V. Poda
  • O. G. Polischuk
  • V. I. Tretyak
Regular Article - Experimental Physics

Abstract.

The radioactive contamination of a BaF2 scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212Po (present in the crystal scintillator due to contamination by radium) was measured as \( T_{1/2}({}^{212}Po)\) = 298.8±0.8(stat.)±1.4(syst.) ns by the analysis of the events' pulse profiles. The 222Rn nuclide is known as 100% decaying via the emission of the \( \alpha\) particle with T 1/2 = 3.82 d; however, its \( \beta\) decay is also energetically allowed with \( Q_{\beta}=24\pm 21\) keV. Search for decay chains of events with specific pulse shapes characteristic for \( \alpha\) or for \( \beta/\gamma\) signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of 222Rn relatively to \( \beta\) decay as \( B_{\beta} < 0.13\) % at 90% C.L. (equivalent to limit on partial half-life \( T_{1/2}^{\beta}> 8.0\) y). The half-life limits of 212Pb, 222Rn and 226Ra relatively to 2\( \beta\) decays are also improved in comparison with the earlier results.

Keywords

Radioactive Contamination 231Pa Crystal Scintillator Relative Light Output National Nuclear Data 

References

  1. 1.
    S.E. Rathi et al., Nucl. Instrum. Methods A 482, 355 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    C. Guerrero et al., Nucl. Instrum. Methods A 608, 424 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Seliverstov et al., Nucl. Instrum. Methods A 695, 369 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Vergados et al., Rep. Prog. Phys. 75, 106301 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A. Giuliani, A. Poves, Adv. High Energy Phys. 2012, 857016 (2012)CrossRefGoogle Scholar
  6. 6.
    J.J. Gomez-Cadenas et al., Riv. Nuovo Cimento 35, 29 (2012)Google Scholar
  7. 7.
    B. Schwingenheuer, Ann. Phys. (Berlin) 525, 269 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    R. Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Maalampi, J. Suhonen, Adv. High Energy Phys. 2013, 505874 (2013)CrossRefGoogle Scholar
  10. 10.
    O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014, 951432 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A.P. Meshik et al., Phys. Rev. C 64, 035205 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M. Pujol et al., Geochim. Cosmochim. Acta 73, 6834 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R. Cerulli et al., Nucl. Instrum. Methods A 525, 535 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    V.I. Tretyak et al., Europhys. Lett. 69, 41 (2005) more detailed version: arXiv:nucl-ex/0404016 ADSCrossRefGoogle Scholar
  18. 18.
    H.O. Back et al., Phys. Lett. B 525, 29 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    C. Aberle et al., JINST 06, P11006 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    H.O. Back et al., Phys. Lett. B 563, 23 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    P. Dorenbos et al., IEEE Trans. Nucl. Sci. 42, 2190 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    I.V. Khodyuk et al., IEEE Trans. Nucl. Sci. 59, 3320 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    S. Pecourt et al., Astropart. Phys. 11, 457 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    R.B. Firestone, Table of Isotopes (John Wiley & Sons, N.Y., 1996) and 1998 CD updateGoogle Scholar
  25. 25.
    E. Browne, Nucl. Data Sheets 104, 427 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    G. Bellini et al., Eur. Phys. J. A 49, 92 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Singh, A.K. Jain, J.K. Tuli, Nucl. Data Sheets 112, 2851 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    B. Singh et al., Nucl. Data Sheets 84, 487 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    National Nuclear Data Center, http://www.nndc.bnl.gov/logft/
  30. 30.
    G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Belli
    • 1
  • R. Bernabei
    • 1
    • 2
  • F. Cappella
    • 3
    • 4
  • V. Caracciolo
    • 5
  • R. Cerulli
    • 5
  • F. A. Danevich
    • 6
  • A. Di Marco
    • 2
  • A. Incicchitti
    • 3
  • D. V. Poda
    • 6
  • O. G. Polischuk
    • 3
    • 6
  • V. I. Tretyak
    • 3
    • 6
  1. 1.INFN, Sezione di Roma “Tor Vergata”RomeItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  3. 3.INFN, Sezione di RomaRomeItaly
  4. 4.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomeItaly
  5. 5.INFNLaboratori Nazionali del Gran SassoAssergi (AQ)Italy
  6. 6.Institute for Nuclear ResearchKyivUkraine

Personalised recommendations