Skip to main content

Advertisement

Log in

Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The radioactive contamination of a BaF2 scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212Po (present in the crystal scintillator due to contamination by radium) was measured as \( T_{1/2}({}^{212}Po)\) = 298.8±0.8(stat.)±1.4(syst.) ns by the analysis of the events' pulse profiles. The 222Rn nuclide is known as 100% decaying via the emission of the \( \alpha\) particle with T 1/2 = 3.82 d; however, its \( \beta\) decay is also energetically allowed with \( Q_{\beta}=24\pm 21\) keV. Search for decay chains of events with specific pulse shapes characteristic for \( \alpha\) or for \( \beta/\gamma\) signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of 222Rn relatively to \( \beta\) decay as \( B_{\beta} < 0.13\) % at 90% C.L. (equivalent to limit on partial half-life \( T_{1/2}^{\beta}> 8.0\) y). The half-life limits of 212Pb, 222Rn and 226Ra relatively to 2\( \beta\) decays are also improved in comparison with the earlier results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.E. Rathi et al., Nucl. Instrum. Methods A 482, 355 (2002)

    Article  ADS  Google Scholar 

  2. C. Guerrero et al., Nucl. Instrum. Methods A 608, 424 (2009)

    Article  ADS  Google Scholar 

  3. D.M. Seliverstov et al., Nucl. Instrum. Methods A 695, 369 (2012)

    Article  ADS  Google Scholar 

  4. J.D. Vergados et al., Rep. Prog. Phys. 75, 106301 (2012)

    Article  ADS  Google Scholar 

  5. A. Giuliani, A. Poves, Adv. High Energy Phys. 2012, 857016 (2012)

    Article  Google Scholar 

  6. J.J. Gomez-Cadenas et al., Riv. Nuovo Cimento 35, 29 (2012)

    Google Scholar 

  7. B. Schwingenheuer, Ann. Phys. (Berlin) 525, 269 (2013)

    Article  ADS  Google Scholar 

  8. R. Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013)

    Article  ADS  Google Scholar 

  9. J. Maalampi, J. Suhonen, Adv. High Energy Phys. 2013, 505874 (2013)

    Article  Google Scholar 

  10. O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014, 951432 (2014)

    Article  Google Scholar 

  11. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  12. V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995)

    Article  ADS  Google Scholar 

  13. V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)

    Article  ADS  Google Scholar 

  14. A.P. Meshik et al., Phys. Rev. C 64, 035205 (2001)

    Article  ADS  Google Scholar 

  15. M. Pujol et al., Geochim. Cosmochim. Acta 73, 6834 (2009)

    Article  ADS  Google Scholar 

  16. R. Cerulli et al., Nucl. Instrum. Methods A 525, 535 (2004)

    Article  ADS  Google Scholar 

  17. V.I. Tretyak et al., Europhys. Lett. 69, 41 (2005) more detailed version: arXiv:nucl-ex/0404016

    Article  ADS  Google Scholar 

  18. H.O. Back et al., Phys. Lett. B 525, 29 (2002)

    Article  ADS  Google Scholar 

  19. C. Aberle et al., JINST 06, P11006 (2011)

    Article  ADS  Google Scholar 

  20. H.O. Back et al., Phys. Lett. B 563, 23 (2003)

    Article  ADS  Google Scholar 

  21. P. Dorenbos et al., IEEE Trans. Nucl. Sci. 42, 2190 (1995)

    Article  ADS  Google Scholar 

  22. I.V. Khodyuk et al., IEEE Trans. Nucl. Sci. 59, 3320 (2012)

    Article  ADS  Google Scholar 

  23. S. Pecourt et al., Astropart. Phys. 11, 457 (1999)

    Article  ADS  Google Scholar 

  24. R.B. Firestone, Table of Isotopes (John Wiley & Sons, N.Y., 1996) and 1998 CD update

  25. E. Browne, Nucl. Data Sheets 104, 427 (2005)

    Article  ADS  Google Scholar 

  26. G. Bellini et al., Eur. Phys. J. A 49, 92 (2013)

    Article  ADS  Google Scholar 

  27. S. Singh, A.K. Jain, J.K. Tuli, Nucl. Data Sheets 112, 2851 (2011)

    Article  ADS  Google Scholar 

  28. B. Singh et al., Nucl. Data Sheets 84, 487 (1998)

    Article  ADS  Google Scholar 

  29. National Nuclear Data Center, http://www.nndc.bnl.gov/logft/

  30. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, P., Bernabei, R., Cappella, F. et al. Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium. Eur. Phys. J. A 50, 134 (2014). https://doi.org/10.1140/epja/i2014-14134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14134-6

Keywords

Navigation