Advertisement

Recoil separators for radiative capture using radioactive ion beams

Recent advances and detection techniques
Review

Abstract

Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities.

Keywords

Inverse Kinematic Radiative Capture Nuclear Astrophysics Direct Capture Focal Plane Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Angulo et al., Nucl. Phys. A 656, 3 (1999).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Schatz et al., Phys. Rep. 294, 167 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    C. Iliadis, Art Champagne, Jordi José, Sumner Starrfield, Paul Tupper, Astrophys. J. Suppl. 142, 105 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    Christian Iliadis, John M. D'Auria, Sumner Starrfield, William J. Thompson, Michael Wiescher, Astrophys. J. Suppl. 134, 151 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    C. Iliadis, R. Longland et al., Nucl. Phys. A 841, 1 (2010).ADSGoogle Scholar
  6. 6.
    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 251 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 323 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    Q. Zhong et al., J. Phys.: Conf. Ser. 202, 012011 (2010).ADSGoogle Scholar
  11. 11.
    M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012).CrossRefGoogle Scholar
  12. 12.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).ADSCrossRefMATHGoogle Scholar
  13. 13.
    C. Rolfs, R.E. Azuma, Nucl. Phys. A 227, 291 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    Albert Septier (Editor), Focusing of Charged Particles, Vol. 1 (Academic Press, 1967).Google Scholar
  16. 16.
    William T. Diamond, J. Vacuum Sci. Technol. A 16, 707 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    William T. Diamond, J. Vacuum Sci. Technol. A 16, 720 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    John L. Beveridge, Jacob Doornbos, David M. Gardner, Nucl. Instrum. Methods A 240, 316 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    H. Wollnik, Nucl. Instrum. Methods 95, 453 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    A.S. Schlachter et al., Phys. Rev. A 27, 3372 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    C. Ruiz et al., Phys. Rev. C 71, 025802 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988).Google Scholar
  23. 23.
    D.A. Hutcheon et al., Nucl. Instrum. Methods A 498, 190 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    J. Ziegler, http://www.srim.org.
  25. 25.
    U Greife et al., Nucl. Instrum. Methods B 217, 1 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    W. Liu, G. Imbriani et al., Nucl. Instrum. Methods Phys. Res. A 496, 198 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    D. Schürmann et al., Nucl. Instrum. Methods A 531, 428 (2004).ADSGoogle Scholar
  28. 28.
    J. Zylberberg et al., Nucl. Instrum. Methods B 254, 17 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    D.A. Hutcheon, C. Ruiz, J. Fallis et al., Nucl. Instrum. Methods A 689, 70 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    K. Chipps et al., AIP Conf. Proc. 1525, 625 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    A. Kontos et al., Nucl. Instrum. Methods A 664, 272 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    C. Vockenhuber et al., Nucl. Instrum. Methods B 266, 4167 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    J.M. D'Auria et al., Phys. Rev. C 69, 065803 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    D. Hutcheon et al., Nucl. Instrum. Methods B 266, 4171 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    K. Wisshak, F. Käppeler, G. Schatz, Nucl. Instrum. Methods 221, 385 (1984).CrossRefGoogle Scholar
  36. 36.
    J.A. Kemmer, Sensors Actuators 15, 169 (1988).CrossRefGoogle Scholar
  37. 37.
    V. Radeka, Nucl. Instrum. Methods 226, 209 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    G. Cardella et al., Nucl. Instrum. Methods A 378, 262 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    S. Tudisco et al., Nucl. Instrum. Methods A 426, 436 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    M. Couder, C. Angulo, W. Galster, J.-S. Graulich, P. Leleux, P. Lipnik, G. Tabacaru, F. Vanderbist, Nucl. Instrum. Methods A 506, 26 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    W. Starzecki, A.M. Stefanini, S. Lunardi, C. Signorini, Nucl. Instrum. Methods 193, 499 (1982).ADSCrossRefGoogle Scholar
  42. 42.
    C. Vockenhuber, L.E. Erikson et al., Nucl. Instrum. Methods A 603, 372 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    K.H. Hahn, K.H. Chang, T.R. Donoghue, B.W. Filippone, Phys. Rev. C 36, 892 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    R.M. Kremer et al., Phys. Rev. Lett. 60, 1475 (1988).ADSCrossRefGoogle Scholar
  45. 45.
    M.S. Smith, C. Rolfs, C.A. Barnes, Nucl. Instrum. Methods A 306, 233 (1991).ADSCrossRefGoogle Scholar
  46. 46.
    L. Gialanella, F. Strieder et al., Nucl. Instrum. Methods A 376, 174 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    A. DiLeva et al., Nucl. Instrum. Methods A 595, 381 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    D. Rogalla, S. Theis et al., Nucl. Instrum. Methods A 437, 266 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    D. Rogalla, D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 513, 573 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    L. Gialanella, D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 522, 432 (2004).ADSCrossRefGoogle Scholar
  51. 51.
    D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 531, 428 (2004).ADSGoogle Scholar
  52. 52.
    D. Schürmann et al., Nucl. Phys. A 758, 367 (2005).ADSCrossRefGoogle Scholar
  53. 53.
    D. Schürmann et al., Eur. Phys. J. A 26, 301 (2005).ADSCrossRefGoogle Scholar
  54. 54.
    A. DiLeva et al., Phys. Rev. Lett. 102, 232502 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    C.N. Davids et al., Nucl. Instrum. Methods B 70, 358 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    B. Davids, private communication (2012).Google Scholar
  57. 57.
    K.E. Rehm et al., Phys. Rev. C 55, R566 (1997).ADSCrossRefGoogle Scholar
  58. 58.
    C. Angulo, M. Couder, S. Cherubini, W. Galster, J.-S. Graulich, P. Leleux, F. Vanderbist, A.C. Shotter, Nucl. Phys. A 688, 462 (2001).ADSCrossRefGoogle Scholar
  59. 59.
    M. Couder, C. Angulo, E. Casarejos, P. Demaret, P. Leleux, F. Vanderbist, Nucl. Phys. A 758, 741 (2005).ADSCrossRefGoogle Scholar
  60. 60.
    M.S. Smith, Commissioning of the Daresbury recoil seperator for nuclear astrophysics measurements at the Holifield radioactive ion beam facility, in Proceedings of the 2nd Oak Ridge Symposium on Atomic and Nuclear Astrophysics, edited by A. Mezzacappa (1998) pp. 511--518.Google Scholar
  61. 61.
    D. Bardayan et al., Eur. Phys. J. A 42, 457 (2009).ADSCrossRefGoogle Scholar
  62. 62.
    D.A. Hutcheon et al., Nucl. Instrum. Methods A 498, 190 (2003).ADSCrossRefGoogle Scholar
  63. 63.
    D.A. Hutcheon et al., Nucl. Phys. A 718, 515 (2003).ADSCrossRefGoogle Scholar
  64. 64.
    S. Engel, D.A. Hutcheon et al., Nucl. Instrum. Methods A 553, 491 (2005).ADSCrossRefGoogle Scholar
  65. 65.
    G.C. Ball, L. Buchmann, B. Davids, R. Kanungo, C. Ruiz, C.E. Svensson, J. Phys. G: Nucl. Part. Phys. 38, 024003 (2011).ADSCrossRefGoogle Scholar
  66. 66.
    R.E. Laxdal et al., Nucl. Phys. A 701, 647 (2002).ADSCrossRefGoogle Scholar
  67. 67.
    S.K.L. Sjue et al., Nucl. Instrum. Methods A 700, 179 (2013).ADSCrossRefGoogle Scholar
  68. 68.
    Dario G. Gigliotti, Joel G. Rogers, Ahmed H. Hussein, Nucl. Instrum. Methods B 204, 671 (2003).ADSCrossRefGoogle Scholar
  69. 69.
    C. Ruiz, A. Parikh, J. José et al., Phys. Rev. Lett. 96, 252501 (2006).ADSCrossRefGoogle Scholar
  70. 70.
    L. Erikson, C. Ruiz et al., Phys. Rev. C 81, 045808 (2010).ADSCrossRefGoogle Scholar
  71. 71.
    C. Akers et al., Phys. Rev. Lett. 110, 262502 (2013).ADSCrossRefGoogle Scholar
  72. 72.
    C. Vockenhuber, C.O. Ouellet, L.-S. The et al., Phys. Rev. C 76, 035801 (2007).ADSCrossRefGoogle Scholar
  73. 73.
    C. Vockenhuber, C.O. Ouellet, L.-S. The et al., J. Phys. G 35, 014034 (2008).ADSCrossRefGoogle Scholar
  74. 74.
    U. Hager et al., Phys. Rev. C 86, 055802 (2012).ADSCrossRefGoogle Scholar
  75. 75.
    B.S. Nara Singh, S.K.L. Sjue, B. Davids, M. Hass et al., J. Phys. Conf. Ser. 337, 012057 (2012).ADSCrossRefGoogle Scholar
  76. 76.
    U. Hager et al., Phys. Rev. C 85, 035803 (2012).ADSCrossRefGoogle Scholar
  77. 77.
    J. Fallis et al., Phys. Rev. C 88, 045801 (2013).ADSCrossRefGoogle Scholar
  78. 78.
    A. Simon et al., Eur. Phys. J. A 49, 60 (2013).ADSCrossRefGoogle Scholar
  79. 79.
    J. Fallis, in preparation (2014).Google Scholar
  80. 80.
    L. Gialanella, F. Strieder et al., Eur. Phys. J. A 7, 303 (2000).ADSGoogle Scholar
  81. 81.
    N. Bateman et al., Phys. Rev. C 63, 035803 (2001).ADSCrossRefGoogle Scholar
  82. 82.
    S. Michimasa et al., Eur. Phys. J. A 14, 275 (2002).ADSCrossRefGoogle Scholar
  83. 83.
    J.A. Caggiano et al., Phys. Rev. C 66, 15804 (2002).ADSCrossRefGoogle Scholar
  84. 84.
    A.A. Chen et al., Phys. Rev. C 63, 065807 (2001).ADSCrossRefGoogle Scholar
  85. 85.
    C.E. Rolfs et al., Nucl. Phys. A 191, 209 (1972).ADSCrossRefGoogle Scholar
  86. 86.
    D. Seweryniak et al., Phys. Rev. Lett. 94, 032501 (2005).ADSCrossRefGoogle Scholar
  87. 87.
    J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999).ADSCrossRefGoogle Scholar
  88. 88.
    J. Hardy et al., Phys. Rev. Lett. 91, 082501 (2003).ADSCrossRefGoogle Scholar
  89. 89.
    D.M. Smith, Astrophys. J. Lett. 589, L55 (2003).ADSCrossRefGoogle Scholar
  90. 90.
    J. Knödlseder, New Astron. Rev. 48, 189 (2004).ADSCrossRefGoogle Scholar
  91. 91.
    R. Diehl et al., Astron. Astrophys. 298, 445 (1995).ADSGoogle Scholar
  92. 92.
    K.A. Chipps, D.W. Bardayan, J.C. Blackmon, K.Y. Chae, U. Greife, R. Hatarik, R.L. Kozub, C. Matei, B.H. Moazen, C.D. Nesaraja, S.D. Pain, W.A. Peters, S.T. Pittman, J.F. Shriner, M.S. Smith, Phys. Rev. Lett. 102, 152502 (2009).ADSCrossRefGoogle Scholar
  93. 93.
    M. Greenfield et al., Nucl. Phys. A 524, 228 (1991).ADSCrossRefGoogle Scholar
  94. 94.
    S. Kubono, T. Kajino, S. Kato, Nucl. Phys. A 588, 521 (1995).ADSCrossRefGoogle Scholar
  95. 95.
    D. Visser et al., Phys. Rev. C 76, 065803 (2007).ADSCrossRefMathSciNetGoogle Scholar
  96. 96.
    R. Zegers et al., Phys. Rev. C 78, 014314 (2008).ADSCrossRefGoogle Scholar
  97. 97.
    G. Lotay et al., Phys. Rev. C 77, 042802(R) (2008).ADSCrossRefGoogle Scholar
  98. 98.
    J. Lassen et al., AIP Conf. Proc. 1104, 9 (2009).ADSCrossRefGoogle Scholar
  99. 99.
    C. Wrede et al., Phys. Rev. C 82, 035805 (2010).ADSCrossRefGoogle Scholar
  100. 100.
    M. Couder et al., Nucl. Instrum. Methods A 587, 35 (2008).ADSCrossRefGoogle Scholar
  101. 101.
    Georg P.A. Berg et al., AIP Conf. Proc. 1269, 445 (2010).ADSCrossRefGoogle Scholar
  102. 102.
    B. Davids, C.N. Davids, Nucl. Instrum. Methods A 544, 565 (2005).ADSCrossRefGoogle Scholar
  103. 103.
    G. Christian, private communication (2014). .Google Scholar
  104. 104.
    R.D. Page et al., Nucl. Instrum. Methods B 204, 634 (2003).ADSCrossRefGoogle Scholar
  105. 105.
    I. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001).ADSCrossRefGoogle Scholar
  106. 106.
    G. Christian et al., Eur. Phys. J. A 50, 75 (2014).ADSCrossRefGoogle Scholar
  107. 107.
    LISE++: Exotic beam production with fragment separators, http://lise.nscl.msu.edu/lise.html.
  108. 108.
    GEANT - Detector description and simulation tool, http://wwwasd.web.cern.ch/wwwasd/geant/.
  109. 109.
    GEANT4: a toolkit for the simulation of the passage of particles through matter, http://geant4.web.cern.ch/geant4/.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.TRIUMFVancouverCanada
  2. 2.Colorado School of MinesGoldenUSA

Personalised recommendations