Skip to main content
Log in

Recoil separators for radiative capture using radioactive ion beams

Recent advances and detection techniques

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Angulo et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Schatz et al., Phys. Rep. 294, 167 (1998).

    Article  ADS  Google Scholar 

  3. C. Iliadis, Art Champagne, Jordi José, Sumner Starrfield, Paul Tupper, Astrophys. J. Suppl. 142, 105 (2002).

    Article  ADS  Google Scholar 

  4. Christian Iliadis, John M. D'Auria, Sumner Starrfield, William J. Thompson, Michael Wiescher, Astrophys. J. Suppl. 134, 151 (2001).

    Article  ADS  Google Scholar 

  5. C. Iliadis, R. Longland et al., Nucl. Phys. A 841, 1 (2010).

    ADS  Google Scholar 

  6. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010).

    Article  ADS  Google Scholar 

  7. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 251 (2010).

    Article  ADS  Google Scholar 

  8. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 323 (2010).

    Article  ADS  Google Scholar 

  9. G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988).

    Article  ADS  Google Scholar 

  10. Q. Zhong et al., J. Phys.: Conf. Ser. 202, 012011 (2010).

    ADS  Google Scholar 

  11. M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012).

    Article  Google Scholar 

  12. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  MATH  Google Scholar 

  13. C. Rolfs, R.E. Azuma, Nucl. Phys. A 227, 291 (1974).

    Article  ADS  Google Scholar 

  14. C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006).

    Article  ADS  Google Scholar 

  15. Albert Septier (Editor), Focusing of Charged Particles, Vol. 1 (Academic Press, 1967).

  16. William T. Diamond, J. Vacuum Sci. Technol. A 16, 707 (1998).

    Article  ADS  Google Scholar 

  17. William T. Diamond, J. Vacuum Sci. Technol. A 16, 720 (1998).

    Article  ADS  Google Scholar 

  18. John L. Beveridge, Jacob Doornbos, David M. Gardner, Nucl. Instrum. Methods A 240, 316 (1985).

    Article  ADS  Google Scholar 

  19. H. Wollnik, Nucl. Instrum. Methods 95, 453 (1971).

    Article  ADS  Google Scholar 

  20. A.S. Schlachter et al., Phys. Rev. A 27, 3372 (1983).

    Article  ADS  Google Scholar 

  21. C. Ruiz et al., Phys. Rev. C 71, 025802 (2005).

    Article  ADS  Google Scholar 

  22. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988).

  23. D.A. Hutcheon et al., Nucl. Instrum. Methods A 498, 190 (2003).

    Article  ADS  Google Scholar 

  24. J. Ziegler, http://www.srim.org.

  25. U Greife et al., Nucl. Instrum. Methods B 217, 1 (2004).

    Article  ADS  Google Scholar 

  26. W. Liu, G. Imbriani et al., Nucl. Instrum. Methods Phys. Res. A 496, 198 (2003).

    Article  ADS  Google Scholar 

  27. D. Schürmann et al., Nucl. Instrum. Methods A 531, 428 (2004).

    ADS  Google Scholar 

  28. J. Zylberberg et al., Nucl. Instrum. Methods B 254, 17 (2007).

    Article  ADS  Google Scholar 

  29. D.A. Hutcheon, C. Ruiz, J. Fallis et al., Nucl. Instrum. Methods A 689, 70 (2012).

    Article  ADS  Google Scholar 

  30. K. Chipps et al., AIP Conf. Proc. 1525, 625 (2013).

    Article  ADS  Google Scholar 

  31. A. Kontos et al., Nucl. Instrum. Methods A 664, 272 (2012).

    Article  ADS  Google Scholar 

  32. C. Vockenhuber et al., Nucl. Instrum. Methods B 266, 4167 (2008).

    Article  ADS  Google Scholar 

  33. J.M. D'Auria et al., Phys. Rev. C 69, 065803 (2004).

    Article  ADS  Google Scholar 

  34. D. Hutcheon et al., Nucl. Instrum. Methods B 266, 4171 (2008).

    Article  ADS  Google Scholar 

  35. K. Wisshak, F. Käppeler, G. Schatz, Nucl. Instrum. Methods 221, 385 (1984).

    Article  Google Scholar 

  36. J.A. Kemmer, Sensors Actuators 15, 169 (1988).

    Article  Google Scholar 

  37. V. Radeka, Nucl. Instrum. Methods 226, 209 (1984).

    Article  ADS  Google Scholar 

  38. G. Cardella et al., Nucl. Instrum. Methods A 378, 262 (1996).

    Article  ADS  Google Scholar 

  39. S. Tudisco et al., Nucl. Instrum. Methods A 426, 436 (1999).

    Article  ADS  Google Scholar 

  40. M. Couder, C. Angulo, W. Galster, J.-S. Graulich, P. Leleux, P. Lipnik, G. Tabacaru, F. Vanderbist, Nucl. Instrum. Methods A 506, 26 (2003).

    Article  ADS  Google Scholar 

  41. W. Starzecki, A.M. Stefanini, S. Lunardi, C. Signorini, Nucl. Instrum. Methods 193, 499 (1982).

    Article  ADS  Google Scholar 

  42. C. Vockenhuber, L.E. Erikson et al., Nucl. Instrum. Methods A 603, 372 (2009).

    Article  ADS  Google Scholar 

  43. K.H. Hahn, K.H. Chang, T.R. Donoghue, B.W. Filippone, Phys. Rev. C 36, 892 (1987).

    Article  ADS  Google Scholar 

  44. R.M. Kremer et al., Phys. Rev. Lett. 60, 1475 (1988).

    Article  ADS  Google Scholar 

  45. M.S. Smith, C. Rolfs, C.A. Barnes, Nucl. Instrum. Methods A 306, 233 (1991).

    Article  ADS  Google Scholar 

  46. L. Gialanella, F. Strieder et al., Nucl. Instrum. Methods A 376, 174 (1996).

    Article  ADS  Google Scholar 

  47. A. DiLeva et al., Nucl. Instrum. Methods A 595, 381 (2008).

    Article  ADS  Google Scholar 

  48. D. Rogalla, S. Theis et al., Nucl. Instrum. Methods A 437, 266 (1999).

    Article  ADS  Google Scholar 

  49. D. Rogalla, D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 513, 573 (2003).

    Article  ADS  Google Scholar 

  50. L. Gialanella, D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 522, 432 (2004).

    Article  ADS  Google Scholar 

  51. D. Schürmann, F. Strieder et al., Nucl. Instrum. Methods A 531, 428 (2004).

    ADS  Google Scholar 

  52. D. Schürmann et al., Nucl. Phys. A 758, 367 (2005).

    Article  ADS  Google Scholar 

  53. D. Schürmann et al., Eur. Phys. J. A 26, 301 (2005).

    Article  ADS  Google Scholar 

  54. A. DiLeva et al., Phys. Rev. Lett. 102, 232502 (2009).

    Article  ADS  Google Scholar 

  55. C.N. Davids et al., Nucl. Instrum. Methods B 70, 358 (1992).

    Article  ADS  Google Scholar 

  56. B. Davids, private communication (2012).

  57. K.E. Rehm et al., Phys. Rev. C 55, R566 (1997).

    Article  ADS  Google Scholar 

  58. C. Angulo, M. Couder, S. Cherubini, W. Galster, J.-S. Graulich, P. Leleux, F. Vanderbist, A.C. Shotter, Nucl. Phys. A 688, 462 (2001).

    Article  ADS  Google Scholar 

  59. M. Couder, C. Angulo, E. Casarejos, P. Demaret, P. Leleux, F. Vanderbist, Nucl. Phys. A 758, 741 (2005).

    Article  ADS  Google Scholar 

  60. M.S. Smith, Commissioning of the Daresbury recoil seperator for nuclear astrophysics measurements at the Holifield radioactive ion beam facility, in Proceedings of the 2nd Oak Ridge Symposium on Atomic and Nuclear Astrophysics, edited by A. Mezzacappa (1998) pp. 511--518.

  61. D. Bardayan et al., Eur. Phys. J. A 42, 457 (2009).

    Article  ADS  Google Scholar 

  62. D.A. Hutcheon et al., Nucl. Instrum. Methods A 498, 190 (2003).

    Article  ADS  Google Scholar 

  63. D.A. Hutcheon et al., Nucl. Phys. A 718, 515 (2003).

    Article  ADS  Google Scholar 

  64. S. Engel, D.A. Hutcheon et al., Nucl. Instrum. Methods A 553, 491 (2005).

    Article  ADS  Google Scholar 

  65. G.C. Ball, L. Buchmann, B. Davids, R. Kanungo, C. Ruiz, C.E. Svensson, J. Phys. G: Nucl. Part. Phys. 38, 024003 (2011).

    Article  ADS  Google Scholar 

  66. R.E. Laxdal et al., Nucl. Phys. A 701, 647 (2002).

    Article  ADS  Google Scholar 

  67. S.K.L. Sjue et al., Nucl. Instrum. Methods A 700, 179 (2013).

    Article  ADS  Google Scholar 

  68. Dario G. Gigliotti, Joel G. Rogers, Ahmed H. Hussein, Nucl. Instrum. Methods B 204, 671 (2003).

    Article  ADS  Google Scholar 

  69. C. Ruiz, A. Parikh, J. José et al., Phys. Rev. Lett. 96, 252501 (2006).

    Article  ADS  Google Scholar 

  70. L. Erikson, C. Ruiz et al., Phys. Rev. C 81, 045808 (2010).

    Article  ADS  Google Scholar 

  71. C. Akers et al., Phys. Rev. Lett. 110, 262502 (2013).

    Article  ADS  Google Scholar 

  72. C. Vockenhuber, C.O. Ouellet, L.-S. The et al., Phys. Rev. C 76, 035801 (2007).

    Article  ADS  Google Scholar 

  73. C. Vockenhuber, C.O. Ouellet, L.-S. The et al., J. Phys. G 35, 014034 (2008).

    Article  ADS  Google Scholar 

  74. U. Hager et al., Phys. Rev. C 86, 055802 (2012).

    Article  ADS  Google Scholar 

  75. B.S. Nara Singh, S.K.L. Sjue, B. Davids, M. Hass et al., J. Phys. Conf. Ser. 337, 012057 (2012).

    Article  ADS  Google Scholar 

  76. U. Hager et al., Phys. Rev. C 85, 035803 (2012).

    Article  ADS  Google Scholar 

  77. J. Fallis et al., Phys. Rev. C 88, 045801 (2013).

    Article  ADS  Google Scholar 

  78. A. Simon et al., Eur. Phys. J. A 49, 60 (2013).

    Article  ADS  Google Scholar 

  79. J. Fallis, in preparation (2014).

  80. L. Gialanella, F. Strieder et al., Eur. Phys. J. A 7, 303 (2000).

    ADS  Google Scholar 

  81. N. Bateman et al., Phys. Rev. C 63, 035803 (2001).

    Article  ADS  Google Scholar 

  82. S. Michimasa et al., Eur. Phys. J. A 14, 275 (2002).

    Article  ADS  Google Scholar 

  83. J.A. Caggiano et al., Phys. Rev. C 66, 15804 (2002).

    Article  ADS  Google Scholar 

  84. A.A. Chen et al., Phys. Rev. C 63, 065807 (2001).

    Article  ADS  Google Scholar 

  85. C.E. Rolfs et al., Nucl. Phys. A 191, 209 (1972).

    Article  ADS  Google Scholar 

  86. D. Seweryniak et al., Phys. Rev. Lett. 94, 032501 (2005).

    Article  ADS  Google Scholar 

  87. J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999).

    Article  ADS  Google Scholar 

  88. J. Hardy et al., Phys. Rev. Lett. 91, 082501 (2003).

    Article  ADS  Google Scholar 

  89. D.M. Smith, Astrophys. J. Lett. 589, L55 (2003).

    Article  ADS  Google Scholar 

  90. J. Knödlseder, New Astron. Rev. 48, 189 (2004).

    Article  ADS  Google Scholar 

  91. R. Diehl et al., Astron. Astrophys. 298, 445 (1995).

    ADS  Google Scholar 

  92. K.A. Chipps, D.W. Bardayan, J.C. Blackmon, K.Y. Chae, U. Greife, R. Hatarik, R.L. Kozub, C. Matei, B.H. Moazen, C.D. Nesaraja, S.D. Pain, W.A. Peters, S.T. Pittman, J.F. Shriner, M.S. Smith, Phys. Rev. Lett. 102, 152502 (2009).

    Article  ADS  Google Scholar 

  93. M. Greenfield et al., Nucl. Phys. A 524, 228 (1991).

    Article  ADS  Google Scholar 

  94. S. Kubono, T. Kajino, S. Kato, Nucl. Phys. A 588, 521 (1995).

    Article  ADS  Google Scholar 

  95. D. Visser et al., Phys. Rev. C 76, 065803 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  96. R. Zegers et al., Phys. Rev. C 78, 014314 (2008).

    Article  ADS  Google Scholar 

  97. G. Lotay et al., Phys. Rev. C 77, 042802(R) (2008).

    Article  ADS  Google Scholar 

  98. J. Lassen et al., AIP Conf. Proc. 1104, 9 (2009).

    Article  ADS  Google Scholar 

  99. C. Wrede et al., Phys. Rev. C 82, 035805 (2010).

    Article  ADS  Google Scholar 

  100. M. Couder et al., Nucl. Instrum. Methods A 587, 35 (2008).

    Article  ADS  Google Scholar 

  101. Georg P.A. Berg et al., AIP Conf. Proc. 1269, 445 (2010).

    Article  ADS  Google Scholar 

  102. B. Davids, C.N. Davids, Nucl. Instrum. Methods A 544, 565 (2005).

    Article  ADS  Google Scholar 

  103. G. Christian, private communication (2014). .

  104. R.D. Page et al., Nucl. Instrum. Methods B 204, 634 (2003).

    Article  ADS  Google Scholar 

  105. I. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001).

    Article  ADS  Google Scholar 

  106. G. Christian et al., Eur. Phys. J. A 50, 75 (2014).

    Article  ADS  Google Scholar 

  107. LISE++: Exotic beam production with fragment separators, http://lise.nscl.msu.edu/lise.html.

  108. GEANT - Detector description and simulation tool, http://wwwasd.web.cern.ch/wwwasd/geant/.

  109. GEANT4: a toolkit for the simulation of the passage of particles through matter, http://geant4.web.cern.ch/geant4/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Ruiz.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, C., Greife, U. & Hager, U. Recoil separators for radiative capture using radioactive ion beams. Eur. Phys. J. A 50, 99 (2014). https://doi.org/10.1140/epja/i2014-14099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14099-4

Keywords

Navigation