Improved energies for the 5.2 keV M1 and 42.0 keV M2 nuclear transitions in 83Rb

  • A. Kh. Inoyatov
  • M. Ryšavý
  • A. Kovalík
  • D. V. Filosofov
  • V. S. Zhdanov
  • Yu. V. Yushkevich
Regular Article - Experimental Physics

Abstract.

The low-energy electron spectrum following the decay of 83Sr was analysed at high instrumental resolution by an electrostatic spectrometer. Significantly improved energies of \( 5235.7\pm 0.8\) and \( 42078.0\pm 1.8\) eV were determined from the conversion electron spectra for the nuclear transitions depopulating the first 3/2- and the second \( 9/2^{+}\) excited states in 83Rb to the \( 5/2^{-}\) ground state, respectively. The M1 character for the 5.2keV nuclear transition was confirmed and the E2 admixture parameter \( \delta^{2}(E2/M1)=(2.6\pm 0.2)\times 10^{-5}\) was obtained. Values of \( 2.8\pm 0.2\), \( 3.8\pm 0.2\), \( 1.4\pm 0.3\), \( 1.4\pm 0.4\), and \( 4.1\pm 0.3\) eV were determined for the K, L1, L2, L3, and M1 natural atomic level widths of rubidium, respectively.

Keywords

Nuclear Transition Electron Binding Energy Conversion Line Conversion Electron Spectrum Conversion Electron Line 

References

  1. 1.
    S.C. Wu, Nucl. Data Sheets 92, 943 (2001) (for $A=83$)CrossRefGoogle Scholar
  2. 2.
    R.C. Etherton et al., Phys. Rev. 168, 1249 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    S. Morinobu, H. Ikegama, Nucl. Phys. A 189, 170 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    Shen Shuifa et al., Eur. Phys. J. A 9, 463 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    M. Zbořil et al., JINST 8, P03009 (2013)ADSGoogle Scholar
  6. 6.
    D. Vénos et al., Meas. Tech. 53, 573 (2010)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Ch. Briançon et al., Nucl. Instrum. Methods 221, 547 (1984)CrossRefGoogle Scholar
  9. 9.
    V.M. Gorozhankin et al., J. Phys. G: Nucl. Part. Phys. 22, 377 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    G.L. Borchert et al., Z. Naturforsch A 30, 274 (1975)ADSGoogle Scholar
  11. 11.
    M. Lederer, V.S. Shirley, Tables of Isotopes, 7th edtion (Wiley, New York, 1978) Appendix 3Google Scholar
  12. 12.
    R.B. Firestone, V.S. Shirley, Tables of Isotopes, 8th edtion (Wiley, New York, 1996) Appendix C-3Google Scholar
  13. 13.
    K.D. Sevier, At. Data Nucl. Data Tables 24, 323 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Naumkin, NIST Standard Reference Database 20, Version 4.1 (X-ray Photoelectron Spectroscopy Database) http://srdata.nist.gov/xps/selEnergyType.aspx
  15. 15.
    M. Ryšavý, M. Fišer, Comput. Phys. Commun. 29, 171 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    A. Inoyatov et al., Spectrosc. Relat. Phenom. 160, 54 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Ryšavý et al., Czech. J. Phys. B 27, 538 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    O. Dragoun et al., Z. Phys. A 281, 347 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    C.C. Lu et al., At. Data 3, 1 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ryšavý, O. Dragoun, Comput. Phys. Commun. 19, 93 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    M.O. Krause, J.H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Kh. Inoyatov
    • 1
    • 2
  • M. Ryšavý
    • 3
  • A. Kovalík
    • 1
    • 3
  • D. V. Filosofov
    • 1
  • V. S. Zhdanov
    • 4
  • Yu. V. Yushkevich
    • 1
  1. 1.Laboratory of Nuclear ProblemsJINRDubnaRussian Federation
  2. 2.Institute of Applied PhysicsNational UniversityTashkentRepublic of Uzbekistan
  3. 3.Nuclear Physics Institute of the ASCRŘežCzech Republic
  4. 4.Nuclear Physics InstituteAlmatyKazakhstan

Personalised recommendations