Advertisement

Symmetry energy impact in simulations of core-collapse supernovae

  • Tobias Fischer
  • Matthias Hempel
  • Irina Sagert
  • Yudai Suwa
  • Jürgen Schaffner-Bielich
Open Access
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post-bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densities.

Keywords

Neutron Star Symmetry Energy Quark Matter Strange Quark Matter Neutron Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, B. Müller, Phys. Rep. 442, 38 (2007).ADSGoogle Scholar
  2. 2.
    H.-T. Janka, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).ADSGoogle Scholar
  3. 3.
    J.M. LeBlanc, J.R. Wilson, Astrophys. J. 161, 541 (1970).ADSGoogle Scholar
  4. 4.
    A. Burrows, E. Livne, L. Dessart, C. Ott, J. Murphy, Astrophys. J. 640, 878 (2006).ADSGoogle Scholar
  5. 5.
    I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich et al., Phys. Rev. Lett. 102, 081101 (2009).ADSGoogle Scholar
  6. 6.
    H.A. Bethe, J.R. Wilson, Astrophys. J. 295, 14 (1985).ADSGoogle Scholar
  7. 7.
    F. Kitaura, H.-T. Janka, W. Hillebrandt, Astron. Astrophys. 450, 345 (2006).ADSGoogle Scholar
  8. 8.
    T. Fischer, S. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M. Liebendörfer, Astron. Astrophys. 517, A80 (2010).ADSGoogle Scholar
  9. 9.
    K. Nomoto, Astrophys. J. 322, 206 (1987).ADSGoogle Scholar
  10. 10.
    S. Jones, R. Hirschi, K. Nomoto, T. Fischer, F.X. Timmes, F. Herwig, B. Paxton, H. Toki, T. Suzuki, G. Martínez-Pinedo, Y.H. Lam, M.G. Bertolli, Astrophys. J. 772, 150 (2013).ADSGoogle Scholar
  11. 11.
    B. Müller, H.-T. Janka, A. Marek, Astrophys. J. 756, 84 (2012).ADSGoogle Scholar
  12. 12.
    Y. Suwa, T. Takiwaki, K. Kotake, T. Fischer, M. Liebendörfer, K. Sato, Astrophys. J. 764, 99 (2013).ADSGoogle Scholar
  13. 13.
    S.W. Bruenn, A. Mezzacappa, W.R. Hix, E.J. Lentz, O.E. Bronson Messer, E.J. Lingerfelt, J.M. Blondin, E. Endeve, P. Marronetti, K.N. Yakunin, Astrophys. J. 767, L6 (2013).ADSGoogle Scholar
  14. 14.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010).ADSGoogle Scholar
  15. 15.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010).ADSGoogle Scholar
  16. 16.
    A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012).ADSGoogle Scholar
  17. 17.
    J.W. Holt, N. Kaiser, W. Weise, Prog. Part. Nucl. Phys. 67, 353 (2012).ADSGoogle Scholar
  18. 18.
    F. Sammarruca, B. Chen, L. Coraggio, N. Itaco, R. Machleidt, Phys. Rev. C 86, 054317 (2012).ADSGoogle Scholar
  19. 19.
    I. Tews, T. Krüger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013).ADSGoogle Scholar
  20. 20.
    L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, F. Sammarruca, Phys. Rev. C 87, 014322 (2013).ADSGoogle Scholar
  21. 21.
    J.M. Lattimer, F. Swesty, Nucl. Phys. A 535, 331 (1991).ADSGoogle Scholar
  22. 22.
    H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998).ADSGoogle Scholar
  23. 23.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010).ADSGoogle Scholar
  24. 24.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013).ADSGoogle Scholar
  25. 25.
    Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994).ADSGoogle Scholar
  26. 26.
    S. Typel, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010).ADSGoogle Scholar
  27. 27.
    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010).ADSGoogle Scholar
  28. 28.
    M. Hempel, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer, Astrophys. J. 748, 70 (2012).ADSGoogle Scholar
  29. 29.
    A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013).ADSGoogle Scholar
  30. 30.
    H.-J. Schulze, T. Rijken, Phys. Rev. C 84, 035801 (2011).ADSGoogle Scholar
  31. 31.
    J.A. Pons, S. Reddy, M. Prakash, J.M. Lattimer, J.A. Miralles, Astrophys. J. 513, 780 (1999).ADSGoogle Scholar
  32. 32.
    J. Rikovska Stone, P.A.M. Guichon, H.H. Matevosyan, A.W. Thomas, Nucl. Phys. A 792, 341 (2007).ADSGoogle Scholar
  33. 33.
    V.A. Dexheimer, S. Schramm, Phys. Rev. C 81, 045201 (2010).ADSGoogle Scholar
  34. 34.
    I. Bednarek, P. Haensel, J.L. Zdunik, M. Bejger, R. Mańka, Astron. Astrophys. 543, A157 (2012).ADSGoogle Scholar
  35. 35.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012).ADSGoogle Scholar
  36. 36.
    F. Özel, D. Psaltis, S. Ransom, P. Demorest, M. Alford, Astrophys. J. 724, L199 (2010).ADSGoogle Scholar
  37. 37.
    S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011).ADSGoogle Scholar
  38. 38.
    L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012).ADSGoogle Scholar
  39. 39.
    D. Blaschke, F. Sandin, T. Klähn, J. Berdermann, Phys. Rev. C 80, 065807 (2009).ADSGoogle Scholar
  40. 40.
    A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, 105021 (2010).ADSGoogle Scholar
  41. 41.
    T. Klähn, C.D. Roberts, L. Chang, H. Chen, Y.-X. Liu, Phys. Rev. C 82, 035801 (2010).ADSGoogle Scholar
  42. 42.
    H. Chen, M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. D 84, 105023 (2011).ADSGoogle Scholar
  43. 43.
    M. Takahara, K. Sato, Prog. Theor. Phys. 80, 861 (1988).ADSGoogle Scholar
  44. 44.
    N. Gentile, M. Aufderheide, G. Mathews, F. Swesty, G. Fuller, Astrophys. J. 414, 701 (1993).ADSGoogle Scholar
  45. 45.
    K. Nakazato, S. Furusawa, K. Sumiyoshi, A. Ohnishi, S. Yamada, H. Suzuki, Astrophys. J. 745, 197 (2012).ADSGoogle Scholar
  46. 46.
    K. Nakazato, K. Sumiyoshi, S. Yamada, Astrophys. J. 721, 1284 (2010).ADSGoogle Scholar
  47. 47.
    K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada, H. Suzuki, Astrophys. J. 690, L43 (2009).ADSGoogle Scholar
  48. 48.
    T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, T. Rauscher, F. Thielemann, R. Käppeli, G. Martínez-Pinedo, M. Liebendörfer, Astrophys. J. Suppl. 194, 39 (2011).ADSGoogle Scholar
  49. 49.
    T. Fischer, D. Blaschke, M. Hempel, T. Klähn, R. Lastowiecki, M. Liebendörfer, G. Martínez-Pinedo, G. Pagliara, I. Sagert, F. Sandin, J. Schaffner-Bielich, S. Typel, Phys. At. Nucl. 75, 613 (2012).Google Scholar
  50. 50.
    T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, T. Rauscher, F.-K. Thielemann, R. Käppeli, G. Martinez-Pinedo, M. Liebendörfer, Astrophys. J. Suppl. 194, 39 (2011).ADSGoogle Scholar
  51. 51.
    H. Toki, D. Hirata, Y. Sugahara, K. Sumiyoshi, I. Tanihata, Nucl. Phys. A 588, 357 (1995).ADSGoogle Scholar
  52. 52.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005).ADSGoogle Scholar
  53. 53.
    F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010).ADSGoogle Scholar
  54. 54.
    G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).ADSGoogle Scholar
  55. 55.
    S. Furusawa, S. Yamada, K. Sumiyoshi, H. Suzuki, Astrophys. J. 738, 178 (2011).ADSGoogle Scholar
  56. 56.
    S. Furusawa, H. Nagakura, K. Sumiyoshi, S. Yamada, Astrophys. J. 774, 78 (2013).ADSGoogle Scholar
  57. 57.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).ADSGoogle Scholar
  58. 58.
    A.S. Botvina, I.N. Mishustin, Nucl. Phys. A 843, 98 (2010).ADSGoogle Scholar
  59. 59.
    N. Buyukcizmeci, A.S. Botvina, I.N. Mishustin, R. Ogul, M. Hempel, J. Schaffner-Bielich, F.-K. Thielemann, S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Nucl. Phys. A 907, 13 (2013).ADSGoogle Scholar
  60. 60.
    M.D. Voskresenskaya, S. Typel, Nucl. Phys. A 887, 42 (2012).ADSGoogle Scholar
  61. 61.
    G. Röpke, L. Münchow, H. Schulz, Nucl. Phys. A 379, 536 (1982).ADSGoogle Scholar
  62. 62.
    G. Röpke, N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, H.H. Wolter, Nucl. Phys. A 897, 70 (2013).ADSGoogle Scholar
  63. 63.
    M. Hempel, J. Schaffner-Bielich, S. Typel, G. Röpke, Phys. Rev. C 84, 055804 (2011).ADSGoogle Scholar
  64. 64.
    C.J. Horowitz, A. Schwenk, 776, 55 (2006).Google Scholar
  65. 65.
    G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 83, 035802 (2011).ADSGoogle Scholar
  66. 66.
    G. Shen, C.J. Horowitz, E. O’Connor, Phys. Rev. C 83, 065808 (2011).ADSGoogle Scholar
  67. 67.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010).ADSGoogle Scholar
  68. 68.
    J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W. Verbiest, D.G. Whelan, Science 340, 448 (2013).ADSGoogle Scholar
  69. 69.
    J. Piekarewicz, J. Phys. G Nucl. Phys. 37, 064038 (2010).ADSGoogle Scholar
  70. 70.
    V. Suleimanov, J. Poutanen, M. Revnivtsev, K. Werner, Astrophys. J. 742, 122 (2011).ADSGoogle Scholar
  71. 71.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 765, L5 (2013).ADSGoogle Scholar
  72. 72.
    S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013).ADSGoogle Scholar
  73. 73.
    James M. Lattimer, Yeunhwan Lim, Astrophys. J. 771, 51 (2013).ADSGoogle Scholar
  74. 74.
    I. Tews, T. Krüger, A. Gezerlis, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013).ADSGoogle Scholar
  75. 75.
    A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010).ADSGoogle Scholar
  76. 76.
    S. Gandolfi, J. Phys. Conf. Ser. 403, 012016 (2012).ADSGoogle Scholar
  77. 77.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).ADSGoogle Scholar
  78. 78.
    S. Typel, Phys. Rev. C 71, 064301 (2005).ADSGoogle Scholar
  79. 79.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).ADSGoogle Scholar
  80. 80.
    S. Woosley, A. Heger, T. Weaver, Rev. Mod. Phys. 74, 1015 (2002).ADSGoogle Scholar
  81. 81.
    M. Liebendörfer, O. Messer, A. Mezzacappa, S. Bruenn, C. Cardall et al., Astrophys. J. Suppl. 150, 263 (2004).ADSGoogle Scholar
  82. 82.
    T. Fischer, G. Martínez-Pinedo, M. Hempel, M. Liebendörfer, Phys. Rev. D 85, 083003 (2012).ADSGoogle Scholar
  83. 83.
    A. Juodagalvis, K. Langanke, W.R. Hix, G. Martínez-Pinedo, J.M. Sampaio, Nucl. Phys. A 848, 454 (2010).ADSGoogle Scholar
  84. 84.
    T. Fischer, K. Langanke, G. Martíinez-Pinedo, Phys. Rev. C 88, 065804 (2013).ADSGoogle Scholar
  85. 85.
    S.R. Souza, A.W. Steiner, W.G. Lynch, R. Donangelo, M.A. Famiano, Astrophys. J. 707, 1495 (2009).ADSGoogle Scholar
  86. 86.
    K. Langanke, D.J. Dean, W. Nazarewicz, Nucl. Phys. A 728, 109 (2003).ADSGoogle Scholar
  87. 87.
    S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSGoogle Scholar
  88. 88.
    K. Sumiyoshi, S. Yamada, H. Suzuki, S. Chiba, Phys. Rev. Lett. 97, 091101 (2006).ADSGoogle Scholar
  89. 89.
    T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M. Liebendörfer, Astron. Astrophys. 499, 1 (2009).ADSGoogle Scholar
  90. 90.
    A. Marek, H.-T. Janka, E. Müller, Astron. Astrophys. 496, 475 (2009).ADSGoogle Scholar
  91. 91.
    S.M. Couch, Astrophys. J. 765, 29 (2013).ADSGoogle Scholar
  92. 92.
    S. Typel, H.H. Wolter, G. Röpke, D. Blaschke, arXiv:nucl-th/1309.6934 (2013).Google Scholar
  93. 93.
    K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 667, 382 (2007).ADSGoogle Scholar
  94. 94.
    E. O’Connor, C.D. Ott, Astrophys. J. 730, 70 (2011).ADSGoogle Scholar
  95. 95.
    G.G. Raffelt, Astrophys. J. 561, 890 (2001).ADSGoogle Scholar
  96. 96.
    M.T. Keil, G.G. Raffelt, H.-T. Janka, Astrophys. J. 590, 971 (2003).ADSGoogle Scholar
  97. 97.
    J.M. Stone, M.L. Norman, Astrophys. J. Suppl. 80, 753 (1992).ADSGoogle Scholar
  98. 98.
    M. Liebendörfer, S. Whitehouse, T. Fischer, Astrophys. J. 698, 1174 (2009).ADSGoogle Scholar
  99. 99.
    Y. Suwa, K. Kotake, T. Takiwaki, S.C. Whitehouse, M. Liebendörfer et al., Publ. Astron. Soc. Jpn. 62, L49 (2010).ADSGoogle Scholar
  100. 100.
    Y. Suwa, K. Kotake, T. Takiwaki, M. Liebendörfer, K. Sato, Astrophys. J. 738, 165 (2011).ADSGoogle Scholar
  101. 101.
    T. Takiwaki, K. Kotake, Y. Suwa, Astrophys. J. 749, 98 (2012).ADSGoogle Scholar
  102. 102.
    M. Liebendörfer, A. Mezzacappa, F.-K. Thielemann, O.B. Messer, W.R. Hix et al., Phys. Rev. D 63, 103004 (2001).ADSGoogle Scholar
  103. 103.
    K. Sumiyoshi, G. Röpke, Phys. Rev. C 77, 055804 (2008).ADSGoogle Scholar
  104. 104.
    A. Arcones, G. Martínez-Pinedo, E. O’Connor, A. Schwenk, H.-T. Janka, C.J. Horowitz, K. Langanke, Phys. Rev. C 78, 015806 (2008).ADSGoogle Scholar
  105. 105.
    G. Martínez-Pinedo, T. Fischer, A. Lohs, L. Huther, Phys. Rev. Lett. 109, 251104 (2012).ADSGoogle Scholar
  106. 106.
    L.F. Roberts, S. Reddy, G. Shen, Phys. Rev. C 86, 065803 (2012).ADSGoogle Scholar
  107. 107.
    M. Ferreira, C. Providência, Phys. Rev. C 85, 055811 (2012).ADSGoogle Scholar
  108. 108.
    K. Langanke, G. Martinez-Pinedo, J. Sampaio, D. Dean, W. Hix et al., Phys. Rev. Lett. 90, 241102 (2003).ADSGoogle Scholar
  109. 109.
    W.R. Hix, O.E. Messer, A. Mezzacappa, M. Liebendörfer, J. Sampaio, K. Langanke, D.J. Dean, G. Martínez-Pinedo, Phys. Rev. Lett. 91, 201102 (2003).ADSGoogle Scholar
  110. 110.
    L. Hüdepohl, B. Müller, H.-T. Janka, A. Marek, G.G. Raffelt, Phys. Rev. Lett. 104, 251101 (2010).ADSGoogle Scholar
  111. 111.
    L.F. Roberts, G. Shen, V. Cirigliano, J.A. Pons, S. Reddy, S.E. Woosley, Phys. Rev. Lett. 108, 061103 (2012).ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Tobias Fischer
    • 1
  • Matthias Hempel
    • 2
  • Irina Sagert
    • 3
  • Yudai Suwa
    • 4
  • Jürgen Schaffner-Bielich
    • 5
  1. 1.Institute for Theoretical PhysicsUniversity of WroclawWroclawPoland
  2. 2.Departement PhysikUniversität BaselBaselSwitzerland
  3. 3.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  4. 4.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  5. 5.Institut für Theoretische PhysikGoethe UniversitätFrankfurt am MainGermany

Personalised recommendations