Advertisement

Flow probe of symmetry energy in relativistic heavy-ion reactions

  • P. Russotto
  • M. D. Cozma
  • A. Le Fèvre
  • Y. Leifels
  • R. Lemmon
  • Q. Li
  • J. Łukasik
  • W. Trautmann
Open Access
Regular Article - Experimental Physics
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract.

Flow observables in heavy-ion reactions at incident energies up to about 1GeV per nucleon have been shown to be very useful for investigating the reaction dynamics and for determining the parameters of reaction models based on transport theory. In particular, the elliptic flow in collisions of neutron-rich heavy-ion systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities. The comparison of ratios or differences of neutron and proton flows or neutron and hydrogen flows with predictions of transport models favors an approximately linear density dependence, consistent with ab initio nuclear-matter theories. Extensive parameter searches have shown that the model dependence is comparable to the uncertainties of existing experimental data. Comprehensive new flow data of high accuracy, partly also through providing stronger constraints on model parameters, can thus be expected to improve our knowledge of the equation of state of asymmetric nuclear matter.

Keywords

Transverse Momentum Nuclear Matter Density Dependence Symmetry Energy 197Au Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 99, 112301 (2007)ADSGoogle Scholar
  2. 2.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010)ADSGoogle Scholar
  3. 3.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 85, 064914 (2012)ADSGoogle Scholar
  4. 4.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 707, 330 (2012)ADSGoogle Scholar
  5. 5.
    Jun Xu, Lie-Wen Chen, Che Ming Ko, Bao-An Li, Yu-Gang Ma, Phys. Rev. C 87, 067601 (2013)ADSGoogle Scholar
  6. 6.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSGoogle Scholar
  7. 7.
    Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep. 464, 113 (2008)ADSGoogle Scholar
  8. 8.
    M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G 37, 083101 (2010)ADSGoogle Scholar
  9. 9.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSGoogle Scholar
  10. 10.
    C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006)ADSGoogle Scholar
  11. 11.
    P. Danielewicz, Nucl. Phys. A 673, 375 (2000)ADSGoogle Scholar
  12. 12.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)ADSGoogle Scholar
  13. 13.
    C. Sturm et al., Phys. Rev. Lett. 86, 39 (2001)ADSGoogle Scholar
  14. 14.
    C. Fuchs, A. Faessler, E. Zabrodin, Y.M. Zheng, Phys. Rev. Lett. 86, 1974 (2001)ADSGoogle Scholar
  15. 15.
    Ch. Hartnack, H. Oeschler, J. Aichelin, Phys. Rev. Lett. 96, 012302 (2006)ADSGoogle Scholar
  16. 16.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSGoogle Scholar
  17. 17.
    P. Möller, W.D. Myers, H. Sagawa, S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012)ADSGoogle Scholar
  18. 18.
    Lie-Wen Chen, arXiv:1212.0284 [nucl-th] (2012)
  19. 19.
    B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000)ADSGoogle Scholar
  20. 20.
    R. Subedi et al., Science 320, 1476 (2008)ADSGoogle Scholar
  21. 21.
    Chang Xu, Bao-An Li, Phys. Rev. C 81, 064612 (2010)ADSGoogle Scholar
  22. 22.
    A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012)ADSGoogle Scholar
  23. 23.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)ADSGoogle Scholar
  24. 24.
    A. Carbone, A. Polls, A. Rios, EPL 97, 22001 (2012)ADSGoogle Scholar
  25. 25.
    M. Alvioli, C. Ciofi degli Atti, L.P. Kaptari, C.B. Mezzetti, H. Morita, Int. J. Mod. Phys. E 22, 1330021 (2013)ADSGoogle Scholar
  26. 26.
    W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)ADSGoogle Scholar
  27. 27.
    N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)ADSGoogle Scholar
  28. 28.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)ADSGoogle Scholar
  29. 29.
    W. Reisdorf et al., Nucl. Phys. A 876, 1 (2012)ADSGoogle Scholar
  30. 30.
    Bao-An Li, Phys. Rev. Lett. 88, 192701 (2002)ADSGoogle Scholar
  31. 31.
    Q. Li, Z. Li, H. Stöcker, Phys. Rev. C 73, 051601 (2006)ADSGoogle Scholar
  32. 32.
    Zhao-Qing Feng, Phys. Lett. B 707, 83 (2012)ADSGoogle Scholar
  33. 33.
    M. Famiano et al., Phys. Rev. Lett. 97, 052701 (2006)ADSGoogle Scholar
  34. 34.
    L. Scalone, M. Colonna, M. Di Toro, Phys. Lett. B 461, 9 (1999)ADSGoogle Scholar
  35. 35.
    Bao-An Li, A.T. Sustich, Bin Zhang, Phys. Rev. C 64, 054604 (2001)ADSGoogle Scholar
  36. 36.
    V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, H.H. Wolter, Phys. Lett. B 562, 215 (2003)ADSGoogle Scholar
  37. 37.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005)ADSGoogle Scholar
  38. 38.
    H.H. Gutbrod, K.H. Kampert, B. Kolb, A.M. Poskanzer, H.G. Ritter, R. Schicker, H.R. Schmidt, Phys. Rev. C 42, 640 (1990)ADSGoogle Scholar
  39. 39.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSGoogle Scholar
  40. 40.
    M.D. Cozma, Phys. Lett. B 700, 139 (2011)ADSGoogle Scholar
  41. 41.
    Y. Leifels et al., Phys. Rev. Lett. 71, 963 (1993)ADSGoogle Scholar
  42. 42.
    D. Lambrecht et al., Z. Phys. A 350, 115 (1994)ADSGoogle Scholar
  43. 43.
    Th. Blaich et al., Nucl. Instrum. Methods Phys. Res. A 314, 136 (1992)ADSGoogle Scholar
  44. 44.
    Q. Li, Z. Li, S. Soff, R.K. Gupta, M. Bleicher, H. Stöcker, J. Phys. G 31, 1359 (2005)ADSGoogle Scholar
  45. 45.
    G. Ferini, T. Gaitanos, M. Colonna, M. Di Toro, H.H. Wolter, Phys. Rev. Lett. 97, 202301 (2006)ADSGoogle Scholar
  46. 46.
    X. Lopez et al., Phys. Rev. C 75, 011901(R) (2007)ADSGoogle Scholar
  47. 47.
    W. Reisdorf et al., Nucl. Phys. A 781, 459 (2007)ADSGoogle Scholar
  48. 48.
    Zhigang Xiao et al., Phys. Rev. Lett. 102, 062502 (2009)ADSGoogle Scholar
  49. 49.
    Zhao-Qing Feng, Gen-Ming Jin, Phys. Lett. B 683, 140 (2010)ADSGoogle Scholar
  50. 50.
    W.-J. Xie, J. Su, L. Zhu, F.-S. Zhang, Phys. Lett. B 718, 1510 (2013)ADSGoogle Scholar
  51. 51.
    De-Hua Wen, Bao-An Li, Lie-Wen Chen, Phys. Rev. Lett. 103, 211102 (2009)ADSGoogle Scholar
  52. 52.
    Bao-An Li et al., J. Phys. Conf. Ser. 312, 042006 (2011)ADSGoogle Scholar
  53. 53.
    C.B. Das, S. Das Gupta, C. Gale, Bao-An Li, Phys. Rev. C 67, 034611 (2003)ADSGoogle Scholar
  54. 54.
    Bao-An Li, Lie-Wen Chen, Phys. Rev. C 72, 064611 (2005)ADSGoogle Scholar
  55. 55.
    ChenChen Guo, YongJia Wang, QingFeng Li, W. Trautmann, Ling Liu, LiJuan Wu, Sci. China Phys. Mech. Astron. 55, 252 (2012)ADSGoogle Scholar
  56. 56.
    G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005)ADSGoogle Scholar
  57. 57.
    Hermann Wolter, Proceedings of Science (Bormio2012), 059 (2012)Google Scholar
  58. 58.
    M.D. Cozma, Y. Leifels, W. Trautmann, Q. Li, P. Russotto, Phys. Rev. C 88, 044912 (2013)ADSGoogle Scholar
  59. 59.
    R.C. Lemmon, proposal for SIS experiment S394 (2009)Google Scholar
  60. 60.
    P. Russotto et al., J. Phys. Conf. Ser. 420, 012092 (2013) arXiv:1209.5961 [nucl-ex]ADSGoogle Scholar
  61. 61.
    A. Pagano et al., Nucl. Phys. A 734, 504 (2004)ADSGoogle Scholar
  62. 62.
    W. Trautmann, H.H. Wolter, Int. J. Mod. Phys. E 21, 1230003 (2012)ADSGoogle Scholar
  63. 63.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)Google Scholar
  64. 64.
    M. Baldo, C. Maieron, P. Schuck, X. Viñas, Nucl. Phys. A 736, 241 (2004)ADSGoogle Scholar
  65. 65.
    R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002)ADSGoogle Scholar
  66. 66.
    Z.H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, L.W. Chen, H.R. Ma, Phys. Rev. C 74, 047304 (2006)ADSGoogle Scholar
  67. 67.
    F. Burgio, J. Phys. G 35, 014048 (2008)ADSGoogle Scholar
  68. 68.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)ADSGoogle Scholar
  69. 69.
    V. Giordano, M. Colonna, M. Di Toro, V. Greco, J. Rizzo, Phys. Rev. C 81, 044611 (2010)ADSGoogle Scholar
  70. 70.
    Q. Li, Z. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 151 (2006)ADSGoogle Scholar
  71. 71.
    Q. Li, Z. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 407 (2006)ADSGoogle Scholar
  72. 72.
    D.T. Khoa, N. Ohtsuka, M.A. Matin, A. Faessler, S.W. Huang, E. Lehmann, R.K. Puri, Nucl. Phys. A 548, 102 (1992)ADSGoogle Scholar
  73. 73.
    V.S. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D.S. Kosov, Z. Wang, Nucl. Phys. A 628, 669 (1998)ADSGoogle Scholar
  74. 74.
    M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)ADSGoogle Scholar
  75. 75.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)ADSGoogle Scholar
  76. 76.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSGoogle Scholar
  77. 77.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 765, L5 (2013)ADSGoogle Scholar
  78. 78.
    Bao-An Li, Lie-Wen Chen, F.J. Fattoyev, W.G. Newton, Chang Xu, arXiv:1212.1178 [nucl-th] (2012)
  79. 79.
    I. Vidaña, C. Providência, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009)ADSGoogle Scholar
  80. 80.
    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012)ADSGoogle Scholar
  81. 81.
    C.J. Horowitz et al., Phys. Rev. C 85, 032501(R) (2012)ADSGoogle Scholar
  82. 82.
    G.F. Bertsch, W.G. Lynch, M.B. Tsang, Phys. Lett. B 189, 384 (1987)ADSGoogle Scholar
  83. 83.
    R.C. Lemmon et al., Phys. Lett. B 446, 197 (1999)ADSGoogle Scholar
  84. 84.
    G.D. Westfall, Nucl. Phys. A 630, 27c (1998)ADSGoogle Scholar
  85. 85.
    G.D. Westfall et al., Phys. Rev. Lett. 71, 1986 (1993)ADSGoogle Scholar
  86. 86.
    R. Pak et al., Phys. Rev. Lett. 78, 1022 (1997)ADSGoogle Scholar
  87. 87.
    R. Pak et al., Phys. Rev. Lett. 78, 1026 (1997)ADSGoogle Scholar
  88. 88.
    Yingxun Zhang, Zhuxia Li, Phys. Rev. C 74, 014602 (2006)Google Scholar
  89. 89.
    Z. Kohley et al., Phys. Rev. C 82, 064601 (2010)ADSGoogle Scholar
  90. 90.
    Z. Kohley et al., Phys. Rev. C 85, 064605 (2012)ADSGoogle Scholar
  91. 91.
    Qingfeng Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, W. Trautmann, Phys. Rev. C 83, 044617 (2011)ADSGoogle Scholar
  92. 92.
    Bao-An Li, Nucl. Phys. A 708, 365 (2002)ADSGoogle Scholar
  93. 93.
    Gao-Chan Yong, Bao-An Li, Lie-Wen Chen, Phys. Rev. C 74, 064617 (2006)ADSGoogle Scholar
  94. 94.
    S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)Google Scholar
  95. 95.
    J.-Y. Ollitrault, arXiv:nucl-ex/9711003 (1997)
  96. 96.
    A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)ADSGoogle Scholar
  97. 97.
    A. Andronic et al., Phys. Rev. C 64, 041604 (2001)ADSGoogle Scholar
  98. 98.
    A. Andronic, J. Lukasik, W. Reisdorf, W. Trautmann, Eur. Phys. J. A 30, 31 (2006)ADSGoogle Scholar
  99. 99.
    J. Lukasik et al., Phys. Lett. B 608, 223 (2005)ADSGoogle Scholar
  100. 100.
    A. Andronic et al., Phys. Lett. B 612, 173 (2005)ADSGoogle Scholar
  101. 101.
    C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)ADSGoogle Scholar
  102. 102.
    P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 638, 3c (1998)ADSGoogle Scholar
  103. 103.
    M.B. Tsang et al., Phys. Rev. C 47, 2717 (1993)ADSGoogle Scholar
  104. 104.
    R. Fries, V. Greco, P. Sorensen, Annu. Rev. Nucl. Part. Sci. 58, 177 (2008)ADSGoogle Scholar
  105. 105.
    R. Snellings, New J. Phys. 13, 055008 (2011)ADSGoogle Scholar
  106. 106.
    P. Danielewicz, G. Odyniec, Phys. Lett. B 157, 146 (1985)ADSGoogle Scholar
  107. 107.
    J. Łukasik, W. Trautmann, in Proceedings of the IWM2005 International Workshop on Multifragmentation and Related Topics, Catania, Italy, 2005, edited by R. Bougault, SIF Conf. Proc., Vol. 91 (Italian Physical Society, Bologna, 2006) p. 387, arXiv:nucl-ex/0603028 (2006)
  108. 108.
    J. Łukasik, W. Trautmann, arXiv:0708.2821 [nucl-ex] (2007)
  109. 109.
    C. Hartnack, Li. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, W. Greiner, Nucl. Phys. A 495, 303c (1989)ADSGoogle Scholar
  110. 110.
    S.A. Bass et al., Progr. Part. Nucl. Phys. 41, 225 (1998)ADSGoogle Scholar
  111. 111.
    Q. Li, M. Bleicher, J. Phys. G 36, 015111 (2009)ADSGoogle Scholar
  112. 112.
    Qingfeng Li, Caiwan Shen, M. Di Toro, Mod. Phys. Lett. A 25, 669 (2010)Google Scholar
  113. 113.
    G.Q. Li, R. Machleidt, Phys. Rev. C 48, 1702 (1993)ADSGoogle Scholar
  114. 114.
    G.Q. Li, R. Machleidt, Phys. Rev. C 49, 566 (1994)ADSGoogle Scholar
  115. 115.
    C. Fuchs, A. Faessler, M. El-Shabshiry, Phys. Rev. C 64, 024003 (2001)ADSGoogle Scholar
  116. 116.
    Q. Li, Z. Li, E. Zhao, Phys. Rev. C 69, 017601 (2004)ADSGoogle Scholar
  117. 117.
    Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, W. Trautmann, arXiv:1305.4730 [nucl-th] (2013)
  118. 118.
    Q. Li, Z. Li, E. Zhao, R.K. Gupta, Phys. Rev. C 71, 054907 (2005)ADSGoogle Scholar
  119. 119.
    Y. Wang, C. Guo, Q. Li, H. Zhang, Sci. China Phys. Mech. Astron. 55, 2407 (2012)ADSGoogle Scholar
  120. 120.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, Phys. Rev. C 40, R491 (1989)ADSGoogle Scholar
  121. 121.
    C. Hartnack, J. Aichelin, Phys. Rev. C 49, 2801 (1994)ADSGoogle Scholar
  122. 122.
    Ch. Hartnack, R.K. Puri, J. Aichelin, J. Konopka, S.A. Bass, H. Stöcker, W. Greiner, Eur. Phys. J. A 1, 151 (1998) the notation for $L$ follows the convention used in this referenceADSGoogle Scholar
  123. 123.
    K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, B. Martemyanov, Phys. Rev. C 68, 014904 (2003)ADSGoogle Scholar
  124. 124.
    E. Santini, M.D. Cozma, A. Faessler, C. Fuchs, M.I. Krivoruchenko, B. Martemyanov, Phys. Rev. C 78, 034910 (2008)ADSGoogle Scholar
  125. 125.
    M.D. Cozma, C. Fuchs, E. Santini, A. Fassler, Phys. Lett. B 640, 170 (2006)ADSGoogle Scholar
  126. 126.
    C. Fuchs, P. Essler, T. Gaitanos, H.H. Wolter, Nucl. Phys. A 626, 987 (1997)ADSGoogle Scholar
  127. 127.
    J. Lukasik et al., Nucl. Instrum. Methods Phys. Res. A 709, 120 (2013)ADSGoogle Scholar
  128. 128.
    P. Russotto, in Proceedings of the International Nuclear Physics Conference INPC2013, Firenze, Italy, 2013, to be pulished in EPJ Web of Conferences (2013)Google Scholar
  129. 129.
    A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996)ADSGoogle Scholar
  130. 130.
    D.G. Sarantites, P.-F. Hua, M. Devlin, L.G. Sobotka, J. Elson, J.T. Hood, D.R. LaFosse, J.E. Sarantites, M.R. Maier, Nucl. Instrum. Methods A 381, 418 (1996)ADSGoogle Scholar
  131. 131.
    L. Zhang, Y. Gao, Y. Du, G.H. Zuo, G.C. Yong, Eur. Phys. J. A 48, 30 (2012)ADSGoogle Scholar
  132. 132.

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • P. Russotto
    • 1
  • M. D. Cozma
    • 2
  • A. Le Fèvre
    • 3
  • Y. Leifels
    • 3
  • R. Lemmon
    • 4
  • Q. Li
    • 5
  • J. Łukasik
    • 6
  • W. Trautmann
    • 3
  1. 1.INFNSezione di CataniaCataniaItaly
  2. 2.IFIN-HHMăgurele-BucharestRomania
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  4. 4.STFC Daresbury LaboratoryWarringtonUK
  5. 5.School of ScienceHuzhou Teachers CollegeHuzhouP.R. China
  6. 6.IFJ-PANKrakówPoland

Personalised recommendations