Symmetry energy constraints from giant resonances: A relativistic mean-field theory overview

Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract.

Giant resonances encapsulate the dynamic response of the nuclear ground state to external perturbations. As such, they offer a unique view of the nucleus that is often not accessible otherwise. Although interesting in their own right, giant resonances are also enormously valuable in providing stringent constraints on the equation of state of asymmetric matter. With this view in mind, we focus on two modes of excitation that are essential in reaching this goal: the isoscalar giant monopole resonance (GMR) and the isovector giant dipole resonance (GDR). GMR energies in heavy nuclei are sensitive to the symmetry energy because they probe the incompressibility of neutron-rich matter. Unfortunately, access to the symmetry energy is hindered by the relatively low neutron-proton asymmetry of stable nuclei. Thus, the measurement of GMR energies in exotic nuclei is strongly encouraged. In the case of the GDR, we find the electric dipole polarizability of paramount importance. Indeed, the electric dipole polarizability appears as one of two laboratory observables --with the neutron-skin thickness being the other-- that are highly sensitive to the density dependence of the symmetry energy. Finally, we identify the softness of skin and the nature of the pygmy resonance as important unsolved problems in nuclear structure.

Keywords

208Pb Symmetry Energy Random Phase Approximation Giant Dipole Resonance Symmetric Nuclear Matter 

References

  1. 1.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSGoogle Scholar
  2. 2.
    P. Möller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1996)Google Scholar
  3. 3.
    P. Möller, W.D. Myers, H. Sagawa, S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012)ADSGoogle Scholar
  4. 4.
    J. Duflo, Nucl. Phys. A 576, 29 (1994)ADSGoogle Scholar
  5. 5.
    A. Zuker, Nucl. Phys. A 576, 65 (1994)ADSGoogle Scholar
  6. 6.
    J. Duflo, A. Zuker, Phys. Rev. C 52, R23 (1995)ADSGoogle Scholar
  7. 7.
    M.N. Harakeh, A. van der Woude, Giant Resonances-Fundamental High-frequency Modes of Nuclear Excitation (Clarendon, Oxford, 2001)Google Scholar
  8. 8.
    N. Paar, D. Vretenar E. Khan, G. Colò, Rep. Prog. Phys. 70, 691 (2007)ADSGoogle Scholar
  9. 9.
    H. Sagawa, S. Yoshida, X.R. Zhou, K. Yako, H. Sakai, Phys. Rev. C 76, 024301 (2007)ADSGoogle Scholar
  10. 10.
    X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)ADSGoogle Scholar
  11. 11.
    J. Piekarewicz, M. Centelles, Phys. Rev. C 79, 054311 (2009)ADSGoogle Scholar
  12. 12.
    B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000)ADSGoogle Scholar
  13. 13.
    R.J. Furnstahl, Nucl. Phys. A 706, 85 (2002)ADSGoogle Scholar
  14. 14.
    M. Centelles, X. Roca-Maza, X. Viñas, M. Warda, Phys. Rev. Lett. 102, 122502 (2009)ADSGoogle Scholar
  15. 15.
    X. Roca-Maza, M. Centelles, X. Viñas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011)ADSGoogle Scholar
  16. 16.
    R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956)ADSGoogle Scholar
  17. 17.
    T. Donnelly, J. Dubach, I. Sick, Nucl. Phys. A 503, 589 (1989)ADSGoogle Scholar
  18. 18.
    I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSGoogle Scholar
  19. 19.
    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012)ADSGoogle Scholar
  20. 20.
    C.J. Horowitz et al., Phys. Rev. C 85, 032501 (2012)ADSGoogle Scholar
  21. 21.
    S.J. Pollock, E.N. Fortson, L. Wilets, Phys. Rev. C 46, 2587 (1992)ADSGoogle Scholar
  22. 22.
    T. Sil, M. Centelles, X. Viñas, J. Piekarewicz, Phys. Rev. C 71, 045502 (2005)ADSGoogle Scholar
  23. 23.
    J. Guena, M. Lintz, M.A. Bouchiat, Mod. Phys. Lett. A 20, 375 (2005)ADSGoogle Scholar
  24. 24.
    J. Behr, G. Gwinner, J. Phys. G 36, 033101 (2009)ADSGoogle Scholar
  25. 25.
    M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004)ADSGoogle Scholar
  26. 26.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)ADSGoogle Scholar
  27. 27.
    A.W. Steiner, B.A. Li, Phys. Rev. C 72, 041601 (2005)ADSGoogle Scholar
  28. 28.
    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C 76, 024606 (2007)ADSGoogle Scholar
  29. 29.
    M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)ADSGoogle Scholar
  30. 30.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)ADSGoogle Scholar
  31. 31.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 64, 062802 (2001)ADSGoogle Scholar
  32. 32.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 66, 055803 (2002)ADSGoogle Scholar
  33. 33.
    J. Carriere, C.J. Horowitz, J. Piekarewicz, Astrophys. J. 593, 463 (2003)ADSGoogle Scholar
  34. 34.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005)ADSGoogle Scholar
  35. 35.
    B.A. Li, A.W. Steiner, Phys. Lett. B 642, 436 (2006)ADSGoogle Scholar
  36. 36.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSGoogle Scholar
  37. 37.
    F.J. Fattoyev, J. Piekarewicz, Phys. Rev. C 82, 025810 (2010)ADSGoogle Scholar
  38. 38.
    J. Piekarewicz, Phys. Rev. C 76, 064310 (2007)ADSGoogle Scholar
  39. 39.
    A. Carbone et al., Phys. Rev. C 81, 041301 (2010)ADSGoogle Scholar
  40. 40.
    K. Hebeler, J. Lattimer, C. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)ADSGoogle Scholar
  41. 41.
    A. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012)ADSGoogle Scholar
  42. 42.
    K. Hebeler, J. Lattimer, C. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013)ADSGoogle Scholar
  43. 43.
    M. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSGoogle Scholar
  44. 44.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSGoogle Scholar
  45. 45.
    J.D. Walecka, Ann. Phys. 83, 491 (1974)ADSGoogle Scholar
  46. 46.
    B.D. Serot, Phys. Lett. B 86, 146 (1979)ADSGoogle Scholar
  47. 47.
    R.J. Furnstahl, B.D. Serot, Comments Nucl. Part. Phys. 2, A23 (2000)Google Scholar
  48. 48.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSMathSciNetGoogle Scholar
  49. 49.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSMathSciNetGoogle Scholar
  50. 50.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)ADSGoogle Scholar
  51. 51.
    R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 615, 441 (1997)ADSGoogle Scholar
  52. 52.
    R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 618, 446 (1997)ADSGoogle Scholar
  53. 53.
    J.J. Rusnak, R.J. Furnstahl, Nucl. Phys. A 627, 495 (1997)ADSGoogle Scholar
  54. 54.
    R.J. Furnstahl, J.C. Hackworth, Phys. Rev. C 56, 2875 (1997)ADSGoogle Scholar
  55. 55.
    M. Kortelainen, R.J. Furnstahl, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 82, 011304 (2010)ADSGoogle Scholar
  56. 56.
    H. Mueller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)ADSGoogle Scholar
  57. 57.
    C.J. Horowitz, B.D. Serot, Nucl. Phys. A 368, 503 (1981)ADSGoogle Scholar
  58. 58.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  59. 59.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977)ADSMathSciNetGoogle Scholar
  60. 60.
    D.H. Youngblood, H.L. Clark, Y.W. Lui, Phys. Rev. Lett. 82, 691 (1999)ADSGoogle Scholar
  61. 61.
    Y.W. Lui, D.H. Youngblood, Y. Tokimoto, H.L. Clark, B. John, Phys. Rev. C 70, 014307 (2004)ADSGoogle Scholar
  62. 62.
    M. Uchida et al., Phys. Lett. B 557, 12 (2003)ADSGoogle Scholar
  63. 63.
    M. Uchida et al., Phys. Rev. C 69, 051301 (2004)ADSMathSciNetGoogle Scholar
  64. 64.
    T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)ADSGoogle Scholar
  65. 65.
    T. Li et al., Phys. Rev. C 81, 034309 (2010)ADSGoogle Scholar
  66. 66.
    U. Garg, D. Patel, private communicationGoogle Scholar
  67. 67.
    N.K. Glendenning, Compact Stars (Springer-Verlag, New York, 2000)Google Scholar
  68. 68.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)ADSGoogle Scholar
  69. 69.
    J. Antoniadis et al., Science 340, 6131 (2013)ADSGoogle Scholar
  70. 70.
    B.G. Todd, J. Piekarewicz, Phys. Rev. C 67, 044317 (2003)ADSGoogle Scholar
  71. 71.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  72. 72.
    W.H. Dickhoff, D. Van Neck, Many-Body Theory Exposed (World Scientific Publishing Co., 2005)Google Scholar
  73. 73.
    J.F. Dawson, R.J. Furnstahl, Phys. Rev. C 42, 2009 (1990)ADSGoogle Scholar
  74. 74.
    J. Piekarewicz, Phys. Rev. C 62, 051304 (2000)ADSGoogle Scholar
  75. 75.
    J. Piekarewicz, Phys. Rev. C 64, 024307 (2001)ADSGoogle Scholar
  76. 76.
    Z.Y. Ma, A. Wandelt, N. Van Giai, D. Vretenar, P. Ring, L.G. Cao, Nucl. Phys. A 703, 222 (2002)ADSGoogle Scholar
  77. 77.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2002)ADSGoogle Scholar
  78. 78.
    J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl. Phys. A 591, 435 (1995)ADSGoogle Scholar
  79. 79.
    J. Piekarewicz, Phys. Rev. C 69, 041301 (2004)ADSGoogle Scholar
  80. 80.
    J. Piekarewicz, Phys. Rev. C 66, 034305 (2002)ADSGoogle Scholar
  81. 81.
    P.G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010)ADSGoogle Scholar
  82. 82.
    J. Piekarewicz, Phys. Rev. C 83, 034319 (2011)ADSGoogle Scholar
  83. 83.
    J. Piekarewicz et al., Phys. Rev. C 85, 041302(R) (2012)ADSGoogle Scholar
  84. 84.
    X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013)ADSGoogle Scholar
  85. 85.
    A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)ADSGoogle Scholar
  86. 86.
    I. Poltoratska et al., Phys. Rev. C 85, 041304 (2012)ADSGoogle Scholar
  87. 87.
    W. Satula, R.A. Wyss, M. Rafalski, Phys. Rev. C 74, 011301 (2006)ADSGoogle Scholar
  88. 88.
    G.A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540 (1997)ADSGoogle Scholar
  89. 89.
    G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999)ADSGoogle Scholar
  90. 90.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)ADSGoogle Scholar
  91. 91.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSGoogle Scholar
  92. 92.
    F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010)ADSGoogle Scholar
  93. 93.
    F.J. Fattoyev, J. Piekarewicz, Phys. Rev. Lett 111, 162501 (2013)ADSGoogle Scholar
  94. 94.
    W.C. Chen, J. Piekarewicz, M. Centelles, Phys. Rev. C 88, 024319 (2013)ADSGoogle Scholar
  95. 95.
    J. Piekarewicz, Phys. Rev. C 76, 031301 (2007)ADSGoogle Scholar
  96. 96.
    H. Sagawa, S. Yoshida, G.M. Zeng, J.Z. Gu, X.Z. Zhang, Phys. Rev. C 76, 034327 (2007)ADSGoogle Scholar
  97. 97.
    A. Avdeenkov et al., Phys. Rev. C 79, 034309 (2009)ADSGoogle Scholar
  98. 98.
    J. Piekarewicz, J. Phys. G 37, 064038 (2010)ADSGoogle Scholar
  99. 99.
    L.G. Cao, H. Sagawa, G. Colò, Phys. Rev. C 86, 054313 (2012)ADSGoogle Scholar
  100. 100.
    D. Patel et al., Phys. Lett. B 718, 447 (2012)ADSGoogle Scholar
  101. 101.
    J. Li, G. Colò, J. Meng, Phys. Rev. C 78, 064304 (2008)ADSGoogle Scholar
  102. 102.
    E. Khan, Phys. Rev. C 80, 011307 (2009)ADSGoogle Scholar
  103. 103.
    E. Khan, Phys. Rev. C 80, 057302 (2009)ADSGoogle Scholar
  104. 104.
    E. Khan, J. Margueron, G. Colò, K. Hagino, H. Sagawa, Phys. Rev. C 82, 024322 (2010)ADSGoogle Scholar
  105. 105.
    P. Vesely, J. Toivanen, B.G. Carlsson, J. Dobaczewski, N. Michel, A. Pastore, Phys. Rev. C 86, 024303 (2012)ADSGoogle Scholar
  106. 106.
    X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306 (2012)ADSGoogle Scholar
  107. 107.
    Y. Suzuki, K. Ikeda, H. Sato, Prog. Theor. Phys. 83, 180 (1990)ADSGoogle Scholar
  108. 108.
    P. Van Isacker, D.D. Nagarajan, M.A. Warner, Phys. Rev. C 45, R13 (1992)ADSGoogle Scholar
  109. 109.
    I. Hamamoto, H. Sagawa, X.Z. Zhang, Phys. Rev. C 53, 765 (1996)ADSGoogle Scholar
  110. 110.
    I. Hamamoto, H. Sagawa, X.Z. Zhang, Phys. Rev. C 57, R1064 (1998)ADSGoogle Scholar
  111. 111.
    D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Phys. Rev. C 63, 047301 (2001)ADSGoogle Scholar
  112. 112.
    D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Nucl. Phys. A 692, 496 (2001)ADSGoogle Scholar
  113. 113.
    N. Paar, P. Ring, T. Niksic, D. Vretenar, Phys. Rev. C 67, 034312 (2003)ADSGoogle Scholar
  114. 114.
    N. Tsoneva, H. Lenske, C. Stoyanov, Phys. Lett. B 586, 213 (2004)ADSGoogle Scholar
  115. 115.
    D. Sarchi, P.F. Bortignon, G. Colò, Phys. Lett. B 601, 27 (2004)ADSGoogle Scholar
  116. 116.
    N. Paar, T. Niksic, D. Vretenar, P. Ring, Phys. Lett. B 606, 288 (2005)ADSGoogle Scholar
  117. 117.
    J. Piekarewicz, Phys. Rev. C 73, 044325 (2006)ADSGoogle Scholar
  118. 118.
    N. Tsoneva, H. Lenske, Phys. Rev. C 77, 024321 (2008)ADSGoogle Scholar
  119. 119.
    A. Klimkiewicz et al., Phys. Rev. C 76, 051603 (2007)ADSGoogle Scholar
  120. 120.
    P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)ADSGoogle Scholar
  121. 121.
    O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)ADSGoogle Scholar
  122. 122.
    D. Rossi et al., J. Phys. Conf. Ser. 420, 012072 (2013)ADSGoogle Scholar
  123. 123.
    D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)ADSGoogle Scholar
  124. 124.
    UNEDF Collaboration, Building a universal nuclear energy density functional, http://unedf.org
  125. 125.
    M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010)ADSGoogle Scholar
  126. 126.
    F.J Fattoyev, J. Piekarewicz, Phys. Rev. C 84, 064302 (2011)ADSGoogle Scholar
  127. 127.
    F.J. Fattoyev, J. Piekarewicz, Phys. Rev. C 88, 015802 (2012)ADSGoogle Scholar
  128. 128.
    J. Erler, C.J. Horowitz, W. Nazarewicz, M. Rafalski, P.G. Reinhard, Phys. Rev. C 87, 044320 (2013)ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations