Three-body force effect on nuclear symmetry energy and single-particle properties of asymmetric nuclear matter

Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

We present an upgraded review of our microscopic investigation on the single-particle properties and the EOS of isospin asymmetric nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force. We pay special attention to the discussion of the three-body force effect and the comparison of our results with the predictions by other ab initio approaches. Three-body force is shown to be necessary for reproducing the empirical saturation properties of symmetric nuclear matter within nonrelativistic microscopic frameworks, and also for extending the hole-line expansion to a wide density range. The three-body force effect on nuclear symmetry energy is repulsive, and it leads to a significant stiffening of the density dependence of symmetry energy at supra-saturation densities. Within the Brueckner approach, the three-body force affects the nucleon s.p. potentials primarily via its rearrangement contribution which is strongly repulsive and momentum-dependent at high densities and high momenta. Both the rearrangement contribution induced by the three-body force and the effect of ground-state correlations are crucial for predicting reliably the single-particle properties within the Brueckner framework.

Keywords

Neutron Star Nuclear Matter Density Dependence Symmetry Energy Saturation Density 

References

  1. 1.
    B.A. Li, L.C. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008) and references therein.ADSGoogle Scholar
  2. 2.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).ADSGoogle Scholar
  3. 3.
    I. Bombaci, U. Lombardo, Phys. Rev. C 44, 1892 (1991).ADSGoogle Scholar
  4. 4.
    J.M. Lattimer, C.J. Pethick, M. Prakash, P. Haensel, Phys. Rev. Lett. 66, 2701 (1991).ADSGoogle Scholar
  5. 5.
    M. Baldo, I. Bombaci, G.F. Burgio, Astron. Astrophys. 328, 274 (1997).ADSGoogle Scholar
  6. 6.
    N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer, Berlin, 2000).Google Scholar
  7. 7.
    X.R. Zhou, G.F. Burgio, U. Lombardo, H.-J. Schulze, W. Zuo, Phys. Rev. C 69, 018801 (2004).ADSGoogle Scholar
  8. 8.
    W. Zuo, A. Li, Z.H. Li, U. Lombardo, Phys. Rev. C 70, 055802 (2004).ADSGoogle Scholar
  9. 9.
    A. Li, G.F. Burgio, U. Lombardo, W. Zuo, Phys. Rev. C 74, 055801 (2006).ADSGoogle Scholar
  10. 10.
    I. Bombaci, in Isospin Physics in Heavy-Ion Collision at Intermediate Energies, edited by Bao-An Li, W. Udo Schröder (Nova Science, New York, 2001) p. 35.Google Scholar
  11. 11.
    M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, R. Knorren, Phys. Rep. 280, 1 (1997).ADSGoogle Scholar
  12. 12.
    A.W. Steiner, M. Prakash, J.M. Lattimer et al., Phys. Rep. 411, 325 (2005).ADSGoogle Scholar
  13. 13.
    S. Goriely, J.P. Delaroche, Phys. Lett. B 653, 178 (2007).ADSGoogle Scholar
  14. 14.
    I. Vidana, Phys. Rev. C 85, 045808 (2012).ADSGoogle Scholar
  15. 15.
    M. Baldo, C. Maieron, J. Phys. G 34, R243 (2007).ADSGoogle Scholar
  16. 16.
    C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006).ADSGoogle Scholar
  17. 17.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).ADSGoogle Scholar
  18. 18.
    S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (Wiley, New York, 1983).Google Scholar
  19. 19.
    B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).ADSGoogle Scholar
  20. 20.
    R.J. Furnstahl, Nucl. Phys. A 706, 85 (2002).ADSGoogle Scholar
  21. 21.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev C 72, 064309 (2005).ADSGoogle Scholar
  22. 22.
    S.S. Avancini, J.R. Marinelli, D.P. Menezes et al., Phys. Rev. C 75, 055805 (2007).ADSGoogle Scholar
  23. 23.
    X. Roca-Maza, M. Centelles, X. Vinas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011).ADSGoogle Scholar
  24. 24.
    J.M. Dong, W. Zuo, J.Z. Gu, U. Lombardo, Phys. Rev. C 85, 034308 (2012).ADSGoogle Scholar
  25. 25.
    K. Oyamatsu, I. Tanihata, Y. Sugahara et al., Nucl. Phys. A 634, 3 (1998).ADSGoogle Scholar
  26. 26.
    J.M. Dong. W. Zuo, W. Scheid, Phys. Rev. Lett. 107, 012501 (2011).ADSGoogle Scholar
  27. 27.
    T. Fischer, M. Hempel, I. Sagert, Y. Suwa, J. Schaffner-Bielich, Symmetry energy impact in simulations of core-collapse supernovae, contribution to this Topical Issue, arXiv:1307.6190.
  28. 28.
    F.D. Swesty, J.M. Lattimer, E.S. Mira, Astrophys. J. 425, 195 (1994).ADSGoogle Scholar
  29. 29.
    L.F. Roberts, G. Shen. V. Cirigliano, J.A. Pons, S. Reddy, S.E. Woosley, Phys. Rev. Lett. 108, 061103 (2012).ADSGoogle Scholar
  30. 30.
    B. Datta, A.V. Thampan, I. Bombaci, Astron. Astrophys. 334, 943 (1998).ADSGoogle Scholar
  31. 31.
    A. Bauswein, H.-T. Janka, Phys. Rev. Lett. 108, 011101 (2012).ADSGoogle Scholar
  32. 32.
    K. Hotokezaka et al., Phys. Rev. D 88, 044026 (2013).ADSGoogle Scholar
  33. 33.
    B.A. Li, Phys. Rev. Lett. 88, 192701 (2002).ADSGoogle Scholar
  34. 34.
    B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004).ADSGoogle Scholar
  35. 35.
    B.A. Li, L.W. Chen, G.C. Yong, W. Zuo, Phys. Lett. B 634, 378 (2006).ADSGoogle Scholar
  36. 36.
    Q.F. Li, Z.X. Li, S. Soff, J. Phys. G 31, 1359 (2005).ADSGoogle Scholar
  37. 37.
    Q.F. Li, Z.X. Li, H. Stoecker, Phys. Rev. C 73, 051601 (2006).ADSGoogle Scholar
  38. 38.
    Q.F. Li, Zhuxia Li, E.G. Zhao, et al., Commun. Theor. Phys. 41, 435 (2004).Google Scholar
  39. 39.
    C.C. Guo, Y.J. Wang, Q.F. Li, Sci. China Phys.: Mech. Astron. 55, 252 (2012).ADSGoogle Scholar
  40. 40.
    M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).ADSGoogle Scholar
  41. 41.
    M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009).ADSGoogle Scholar
  42. 42.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).ADSGoogle Scholar
  43. 43.
    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C 75, 034602 (2007).ADSGoogle Scholar
  44. 44.
    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C 76, 024606 (2007).ADSGoogle Scholar
  45. 45.
    M.A. Famiano, T. Liu, W.G. Lynch et al., Phys. Rev. Lett. 97, 052701 (2006).ADSGoogle Scholar
  46. 46.
    G.C. Yong, W. Zuo, X.C. Zhang, Phys. Lett. B 705, 240 (2011).ADSGoogle Scholar
  47. 47.
    FOPI Collaboration (W. Reisdorf, M. Stockmeier, A. Andronic et al.), Nucl. Phys. A 781, 459 (2007).ADSGoogle Scholar
  48. 48.
    FOPI Collaboration (Y. Leifels et al.), Phys. Rev. Lett. 71, 963 (1993).ADSGoogle Scholar
  49. 49.
    FOPI Collaboration (D. Lambrecht et al.), Z. Phys. A 350, 115 (1994).ADSGoogle Scholar
  50. 50.
    Z.G. Xiao, B.A. Li, L.W. Chen et al., Phys. Rev. Lett. 102, 062502 (2009).ADSGoogle Scholar
  51. 51.
    Z.Q. Feng, G.M. Jin, Phys. Lett. B 683, 140 (2010).ADSGoogle Scholar
  52. 52.
    P. Russotto, P.Z. Wu, M. Zoric, Phys. Lett. B 697, 471 (2011).ADSGoogle Scholar
  53. 53.
    M.D. Cozma, Phys. Lett. B 700, 139 (2011).ADSGoogle Scholar
  54. 54.
    M.D. Cozma, Y. Leifels, W. Trautmann, Q. Li, P. Russotto, Phys. Rev. C 88, 044912 (2013).ADSGoogle Scholar
  55. 55.
    X. Roca-Maza, M. Centelles1, X. Vinãs, M. Warda, Phys. Rev. Lett. 106, 252501 (2011).ADSGoogle Scholar
  56. 56.
    P. Danielewicz, Nucl. Phys. A 727, 233 (2003).ADSGoogle Scholar
  57. 57.
    L. Trippa, G. Colò, E. Vigezzi, Phys. Rev. C 77, 061304(R) (2008).ADSGoogle Scholar
  58. 58.
    A. Klimkiewicz, N. Paar, P. Adrich1 et al., Phys. Rev. C 76, 051603(R) (2007).ADSGoogle Scholar
  59. 59.
    A. Carbone, G. Coló, A. Bracco et al., Phys. Rev. C 81, 041301(R) (2010).ADSGoogle Scholar
  60. 60.
    J.M. Dong, W. Zuo, J.Z. Gu, Phys. Rev. C 87, 014303 (2013).ADSGoogle Scholar
  61. 61.
    J.M. Dong, H.F. Zhang, L.J. Wang, W. Zuo, Phys. Rev. C 88, 014302 (2013).ADSGoogle Scholar
  62. 62.
    W.M. Guo, G.C. Yong, Y.J. Wang, Q.F. Li, H.F. Zhang, W. Zuo, Phys. Lett. B 726, 211 (2013).ADSGoogle Scholar
  63. 63.
    T. Lesinski, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 74, 044315 (2006).ADSGoogle Scholar
  64. 64.
    B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995).ADSGoogle Scholar
  65. 65.
    B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997).ADSGoogle Scholar
  66. 66.
    J. Carlson, R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).ADSGoogle Scholar
  67. 67.
    S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004).ADSGoogle Scholar
  68. 68.
    A. Kievsky, M. Viviani, L. Girland, L.E. Marcucci, Phys. Rev. C 81, 04403 (2010).Google Scholar
  69. 69.
    W. Zuo, I. Bombaci, U. Lombardo, Phys. Rev. C 60, 024605 (1999).ADSGoogle Scholar
  70. 70.
    W. Zuo, A. Lejeune, U. Lombardo, J.F. Mathiot, Eur. Phys. J. A 14, 469 (2002).ADSGoogle Scholar
  71. 71.
    W. Zuo, L.G. Cao, B.A. Li, U. Lombardo, C.W. Shen, Phys. Rev. C 72, 014005 (2005).ADSGoogle Scholar
  72. 72.
    W. Zuo, U. Lombardo, H.J. Schulze, Z.H. Li, Phys. Rev. C 74, 014317 (2006).ADSGoogle Scholar
  73. 73.
    I. Vidaña, C. Providência, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009).ADSGoogle Scholar
  74. 74.
    I. Vidaña, A. Polls, C. Providência, Phys. Rev. C 84, 062801 (2011).ADSGoogle Scholar
  75. 75.
    H. Huber, F. Weber, M.K. Wiegel, Phys. Rev. C 51, 1790 (1995).ADSGoogle Scholar
  76. 76.
    C.H. Lee, T.T.S. Kuo, G.Q. Li, G.E. Brown, Phys. Rev. C 57, 3488 (1998).ADSGoogle Scholar
  77. 77.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Nucl. Phys. A 744, 227 (2004).ADSGoogle Scholar
  78. 78.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Phys. Rev. C 72, 065803 (2005).ADSGoogle Scholar
  79. 79.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Phys. Rev. Lett. 95, 022302 (2005).ADSGoogle Scholar
  80. 80.
    Z.Y. Ma, J. Rong, B.Q. Chen et al., Phys. Lett. B 604, 170 (2004).ADSGoogle Scholar
  81. 81.
    P. Krastev, F. Sammarruca, Phys. Rev. C 73, 014001 (2006).ADSGoogle Scholar
  82. 82.
    T. Klahn, D. Blaschke, S. Typel et al., Phys. Rev. C 74, 035802 (2006).ADSGoogle Scholar
  83. 83.
    T. Frick, H. Müther, A. Rios, A. Polls, A. Ramos, Phys. Rev. C 71, 014313 (2005).ADSGoogle Scholar
  84. 84.
    Kh. Gad, Kh.S.A. Hassaneen, Nucl. Phys. A 793, 67 (2007).ADSGoogle Scholar
  85. 85.
    A. Rios, A. Polls, W.H. Dickhoff, Phys. Rev. C 79, 064308 (2009).ADSGoogle Scholar
  86. 86.
    A. Rios, V. Soma, Phys. Rev. Lett. 108, 012501 (2012).ADSGoogle Scholar
  87. 87.
    P. Bozek, P. Czerski, Eur. Phys. J. A 11, 271 (2001).ADSGoogle Scholar
  88. 88.
    P. Bozek, Eur. Phys. J. A 15, 325 (2002).ADSGoogle Scholar
  89. 89.
    P. Bozek, Phys. Rev. C 65, 054306 (2002).ADSGoogle Scholar
  90. 90.
    V. Soma, P. Bozek, Phys. Rev. C 78, 054003 (2008).ADSGoogle Scholar
  91. 91.
    V. Soma, P. Bozek, Phys. Rev. C 80, 025803 (2009).ADSGoogle Scholar
  92. 92.
    Y. Dewulf, D. Van Neck, M. Waroquier, Phys. Lett. B 510, 89 (2001).ADSMATHGoogle Scholar
  93. 93.
    Y. Dewulf, D. Van Neck, M. Waroquier, Phys. Rev. C 65, 054316 (2002).ADSGoogle Scholar
  94. 94.
    Y. Dewulf, W.H. Dickhoff, D. Van Neck, E.R. Stoddard, M. Waroquier, Phys. Rev. Lett. 90, 152501 (2003).ADSGoogle Scholar
  95. 95.
    R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).ADSGoogle Scholar
  96. 96.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).ADSGoogle Scholar
  97. 97.
    G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998).ADSGoogle Scholar
  98. 98.
    M. Modarres, G.H. Bordbar, Phys. Rev. C 58, 2781 (1998).ADSGoogle Scholar
  99. 99.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007).ADSGoogle Scholar
  100. 100.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 77, 015805 (2008).ADSGoogle Scholar
  101. 101.
    A.E.L. Dieperink, Y. Dewulf, D. Van Neck, M. Waroquier, V. Rodin, Phys. Rev. C 68, 064307 (2003).ADSGoogle Scholar
  102. 102.
    Z.H. Li, U. Lombardo, H.J. Schulze, W. Zuo, L.W. Chen, H.R. Ma, Phys. Rev. C 74, 047304 (2006).ADSGoogle Scholar
  103. 103.
    P. Gögelein, E.N.E. van Dalen, Kh. Gad, Kh.S.A. Hassaneen, M. Müther, Phys. Rev. C 79, 024308 (2009).ADSGoogle Scholar
  104. 104.
    B.D. Day, Rev. Mod. Phys. 39, 719 (1967).ADSGoogle Scholar
  105. 105.
    P. Grangé, A. Lejeune, M. Martzolff, J.F. Mathiot, Phys. Rev. C 40, 1040 (1989).ADSGoogle Scholar
  106. 106.
    W. Zuo, A. Lejeune, U. Lombardo, J.F. Mathiot, Nucl. Phys. A 706, 418 (2002).ADSMATHGoogle Scholar
  107. 107.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).ADSGoogle Scholar
  108. 108.
    R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987).ADSGoogle Scholar
  109. 109.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).Google Scholar
  110. 110.
    R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990).ADSGoogle Scholar
  111. 111.
    M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 17, 768 (1978).ADSGoogle Scholar
  112. 112.
    V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).ADSGoogle Scholar
  113. 113.
    Z.H. Li, U. Lombardo, H.J. Schulze, W. Zuo, Phys. Rev. C 77, 034316 (2008).ADSGoogle Scholar
  114. 114.
    J. P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rep. 25, 83 (1976).ADSGoogle Scholar
  115. 115.
    H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998).ADSGoogle Scholar
  116. 116.
    J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983).ADSGoogle Scholar
  117. 117.
    B. Loiseau, Y. Nogami, C.K. Ross, Nucl. Phys. A 165, 601 (1971).ADSGoogle Scholar
  118. 118.
    M. Martzolff, P. Grange, Phys. Lett. B 92, 46 (1980).ADSGoogle Scholar
  119. 119.
    S.A. Coon, M.D. Scadron, P.C. McNamee, B.R. Barrett, D.W.E. Blatt, B.H.J. McKellar, Nucl. Phys. A 317, 242 (1979).ADSGoogle Scholar
  120. 120.
    S.A. Coon, W. Glöckle, Phys. Rev. C 23, 1790 (1981).ADSGoogle Scholar
  121. 121.
    S.A. Coon, M.T. Peña, Phys. Rev. C 48, 2559 (1993).ADSGoogle Scholar
  122. 122.
    R.G. Ellis, S.A. Coon, B.H.J. McKellar, Nucl. Phys. A 438, 631 (1985).ADSGoogle Scholar
  123. 123.
    A. Stadler, J. Adam, H. Henning, P.U. Sauer, Phys. Rev. C 51, 2896 (1995).ADSGoogle Scholar
  124. 124.
    B.H.J. McKellar, R. Rajaraman, Phys. Rev. C 3, 1877 (1971).ADSGoogle Scholar
  125. 125.
    D.W.E. Blatt, B.H.J. McKellar, Phys. Rev. C 11, 614 (1975).ADSGoogle Scholar
  126. 126.
    E. Epelbaum, H.W. Hammer, Ulf-G. Meissner, Rev. Mod. Phys. 81, 1773 (2009) and references therein.ADSGoogle Scholar
  127. 127.
    N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp, A. Nogga, Rep. Prog. Phys. 75, 016301 (2012) and references therein.ADSGoogle Scholar
  128. 128.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011) and references therein.ADSGoogle Scholar
  129. 129.
    N. Kaiser, Phys. Rev. C 61, 014003 (2000).ADSGoogle Scholar
  130. 130.
    N. Kaiser, Phys. Rev. C 64, 057001 (2001).ADSGoogle Scholar
  131. 131.
    N. Kaiser, Phys. Rev. C 65, 017001 (2002).ADSGoogle Scholar
  132. 132.
    E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G. Meissner, H. Witala, Phys. Rev. C 66, 064001 (2002).ADSGoogle Scholar
  133. 133.
    R. Machleidt, D.R. Entem, J. Phys. G 31, S1235 (2005).ADSGoogle Scholar
  134. 134.
    U.-G. Meissner, Eur. Phys. J. A 31, 397 (2007).ADSGoogle Scholar
  135. 135.
    S. Fritsch, N. Kaiser, Eur. Phys. J. A 21, 117 (2004).ADSGoogle Scholar
  136. 136.
    J.W. Holt, N. Kaiser, W. Weise, Eur. Phys. J. A 47, 128 (2011).ADSGoogle Scholar
  137. 137.
    K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301 (2011).ADSGoogle Scholar
  138. 138.
    A. Lovato, O. Benhar, S. Fantoni, K.E. Schmidt, Phys. Rev. C 85, 024003 (2012).ADSGoogle Scholar
  139. 139.
    I. Tews, T. Krueger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013).ADSGoogle Scholar
  140. 140.
    M. Baldo, I. Bombaci, L.S. Ferreira, G, Giansiracusa, U. Lombardo, Phys. Lett. B 209, 135 (1988).ADSGoogle Scholar
  141. 141.
    M. Baldo, I. Bombaci, L.S. Ferreira, G, Giansiracusa, U. Lombardo, Phys. Lett. B 215, 19 (1988).ADSGoogle Scholar
  142. 142.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, C. Mahaux, R. Sartor, Phys. Rev. C 41, 1748 (1990).ADSGoogle Scholar
  143. 143.
    W.H. Dickhoff, M. Müther, Rep. Prog. Phys. 55, 1947 (1992).ADSGoogle Scholar
  144. 144.
    W. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).ADSGoogle Scholar
  145. 145.
    P. Danielewicz, Nucl. Phys. A 673, 375 (2000).ADSGoogle Scholar
  146. 146.
    G.E. Brown, W. Weise, G. Baym, J. Speth, Comments Nucl. Phys. 17, 39 (1987).Google Scholar
  147. 147.
    I. Bombaci, T.T.S. Kuo, U. Lombardo, Phys. Lett. B 331, 9 (1993).ADSGoogle Scholar
  148. 148.
    I. Bombaci, T.T.S. Kuo, U. Lombardo, Phys. Rep. 242, 165 (1994).ADSGoogle Scholar
  149. 149.
    W. Zuo, Z.H. Li, A. Li et al., Phys. Rev. C 69, 064001 (2004).ADSGoogle Scholar
  150. 150.
    W. Zuo, Z.H. Li, A. Li et al., Nucl. Phys. A 745, 34 (2004).ADSGoogle Scholar
  151. 151.
    M. Warda, X. Vinas, X. Roca-Maza, M. Centelles, Phys. Rev. C 80, 024316 (2009).ADSGoogle Scholar
  152. 152.
    P. Danielewicz, J. Lee, Nucl. Phys. A 818, 36 (2009).ADSGoogle Scholar
  153. 153.
    P. Möller, W.D. Myers, H. Sagawa, S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012).ADSGoogle Scholar
  154. 154.
    X. Roca-Maza, M. Brenna, B.K. Agrawal, P.F. Bortignon, G. Coló, Li-Gang Cao, N. Paar, D. Vretenar, Phys. Rev. C 87, 034301 (2013).ADSGoogle Scholar
  155. 155.
    W. Zuo, Nucl. Phys. A 834, 574c (2010).ADSGoogle Scholar
  156. 156.
    D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).ADSGoogle Scholar
  157. 157.
    S. Goriely, M. Bender, M. Pearson et al., Phys. Rev. C 68, 054325 (2003).ADSGoogle Scholar
  158. 158.
    M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007).ADSGoogle Scholar
  159. 159.
    M. Onsi, J.M. Pearson, Phys. Rev. C 65, 047302 (2002).ADSGoogle Scholar
  160. 160.
    S.X. Gan, W. Zuo, U. Lombardo, Chin. Phys. C 36, 513 (2011).ADSGoogle Scholar
  161. 161.
    A.M. Lane, Nucl. Phys. A 35, 676 (1962).Google Scholar
  162. 162.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).ADSGoogle Scholar
  163. 163.
    Z.H. Li, U. Lombardo, Phys. Rev. C 78, 047603 (2008).ADSGoogle Scholar
  164. 164.
    L. Frankfurt, M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23, 2991 (2008).ADSMATHGoogle Scholar
  165. 165.
    M.F. van Batenburg, PhD Thesis, University of Utrecht (2001). .Google Scholar
  166. 166.
    R. Subedi, R. Shneor, P. Monaghan et al., Science 320, 1476 (2008) and references therein.ADSGoogle Scholar
  167. 167.
    P. Yin, J.Y. Li, P. Wang, W. Zuo, Phys. Rev. C 87, 014314 (2013).ADSGoogle Scholar
  168. 168.
    S. Fantoni, V.R. Pandharipande, Nucl. Phys. A 427, 473 (1984).ADSGoogle Scholar
  169. 169.
    P. Grangé, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987).ADSGoogle Scholar
  170. 170.
    O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 505, 267 (1989).ADSGoogle Scholar
  171. 171.
    O. Benhar, A. Fabrocini, S. Fantoni, Phys. Rev. C 41, R24 (1990).ADSGoogle Scholar
  172. 172.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, Nucl. Phys. A 530, 135 (1991).ADSGoogle Scholar
  173. 173.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, C. Mahaux, R. Sartor, Nucl. Phys. A 545, 741 (1992).ADSGoogle Scholar
  174. 174.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010).ADSGoogle Scholar
  175. 175.
    J. Antoniadis et al., Science 340, 1233232 (2013).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Dipartimento di Fisica “E. Fermi”Università di Pisa, and INFN, Sezione di PisaI-56127Italy
  4. 4.Università di Catania and Laboratori Nazionali del Sud (INFN)CataniaItaly

Personalised recommendations