Advertisement

Analysis of the vector and axialvector Bc mesons with QCD sum rules

Regular Article - Theoretical Physics

Abstract

In this article, we study the vector and axialvector Bc mesons with QCD sum rules, and make reasonable predictions for the masses and decay constants, then calculate the leptonic decay widths. The present predictions for the masses and decay constants can be confronted with the experimental data in the future. We can also take the masses and decay constants as basic input parameters and study other phenomenological quantities with the three-point vacuum correlation functions via QCD sum rules.

Keywords

Large Hadron Collider Decay Constant Quark Model Pole Masse Quark Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Abe et al., Phys. Rev. D 58, 112004 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    F. Abe et al., Phys. Rev. Lett. 81, 2432 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    T. Aaltonen et al., Phys. Rev. Lett. 100, 182002 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Abazov et al., Phys. Rev. Lett. 101, 012001 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    J. Beringer et al., Phys. Rev. D 86, 010001 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    C.H. Chang, Y.Q. Chen, G.P. Han, H.T. Jiang, Phys. Lett. B 364, 78 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    K. Kolodziej, A. Leike, R. Ruckl, Phys. Lett. B 355, 337 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Chang, Y.Q. Chen, R.J. Oakes, Phys. Rev. D 54, 4344 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    K. Cheung, T.C. Yuan, Phys. Rev. D 53, 1232 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    K. Cheung, T.C. Yuan, Phys. Rev. D 53, 3591 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    I.P. Gouz, V.V. Kiselev, A.K. Likhoded, V.I. Romanovsky, O.P. Yushchenko, Phys. At. Nucl. 67, 1559 (2004).CrossRefGoogle Scholar
  12. 12.
    C.H. Chang, X.G. Wu, Eur. Phys. J. C 38, 267 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Berezhnoy, A.K. Likhoded, A.A. Martynov, Phys. Rev. D 83, 094012 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    G. Kane, A. Pierce, Perspectives on LHC Physics (World Scientific Publishing Company, Singapore, 2008).Google Scholar
  15. 15.
    S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    S. Godfrey, Phys. Rev. D 70, 054017 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    S.N. Gupta, J.M. Johnson, Phys. Rev. D 53, 312 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    J. Zeng, J.W. Van Orden, W. Roberts, Phys. Rev. D 52, 5229 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    L.P. Fulcher, Phys. Rev. D 60, 074006 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Usp. 38, 1 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Kiselev, Cent. Eur. J. Phys. 2, 523 (2004).CrossRefGoogle Scholar
  25. 25.
    S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 19, 1771 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 20, 6509 (2005).MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 20, 403 (2005).MathSciNetGoogle Scholar
  28. 28.
    N. Brambilla, A. Vairo, Phys. Rev. D 62, 094019 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    A.A. Penin, A. Pineda, V.A. Smirnov, M. Steinhauser, Phys. Lett. B 593, 124 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    C.T.H. Davies et al., Phys. Lett. B 382, 131 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    E.B. Gregory et al., Phys. Rev. Lett. 104, 022001 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    E.B. Gregory et al., Phys. Rev. D 83, 014506 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    C. McNeile et al., Phys. Rev. D 86, 074503 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985).ADSCrossRefGoogle Scholar
  36. 36.
    S. Narison Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 1712002.CrossRefGoogle Scholar
  37. 37.
    E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    M. Chabab, Phys. Lett. B 325, 205 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    P. Colangelo, G. Nardulli, N. Paver, Z. Phys. C 57, 43 (1993).ADSCrossRefGoogle Scholar
  40. 40.
    S. Narison, Phys. Lett. B 210, 238 (1988).ADSCrossRefGoogle Scholar
  41. 41.
    V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Nucl. Phys. B 569, 473 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    V.V. Kiselev, A.V. Tkabladze, Phys. Rev. D 48, 5208 (1993).ADSCrossRefGoogle Scholar
  43. 43.
    S. Bauberger, M. Bohm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. B 37, 95 (1994).ADSCrossRefGoogle Scholar
  44. 44.
    S. Bauberger, F.A. Berends, M. Bohm, M. Buza, Nucl. Phys. B 434, 383 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    Z.G. Wang, arXiv:1303.4146.
  46. 46.
    P. Colangelo, A. Khodjamirian, hep-ph/0010175.Google Scholar
  47. 47.
    B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006).ADSCrossRefGoogle Scholar
  48. 48.
    S. Narison, Phys. Lett. B 693, 559 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    S. Narison, Phys. Lett. B 707, 259 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    S. Narison, Phys. Lett. B 706, 412 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    K.G. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser, C. Sturm, Phys. Rev. D 80, 074010 (2009).ADSCrossRefGoogle Scholar
  52. 52.
    S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha, K. Schilcher, Phys. Rev. D 83, 074014 (2011).ADSCrossRefGoogle Scholar
  53. 53.
    S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha, K. Schilcher, Phys. Rev. D 85, 034003 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    B. Dehnadi, A.H. Hoang, V. Mateu, S.M. Zebarjad, arXiv:1102.2264.
  55. 55.
    A. Hoang, P. Ruiz-Femenia, Ma. Stahlhofen, JHEP 10, 188 (2012).ADSCrossRefGoogle Scholar
  56. 56.
    C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage, Phys. Rev. D 82, 034512 (2010).ADSCrossRefGoogle Scholar
  57. 57.
    H.M. Choi, C.R. Ji, Phys. Rev. D 80, 054016 (2009).ADSCrossRefGoogle Scholar
  58. 58.
    C.W. Hwang, Phys. Rev. D 81, 114024 (2010).ADSCrossRefGoogle Scholar
  59. 59.
    G.L. Wang, Phys. Lett. B 650, 15 (2007).ADSCrossRefGoogle Scholar
  60. 60.
    G.L. Wang, Phys. Lett. B 633, 492 (2006).ADSCrossRefGoogle Scholar
  61. 61.
    A.M. Badalian, B.L.G. Bakker, Yu.A. Simonov, Phys. Rev. D 75, 116001 (2007).ADSCrossRefGoogle Scholar
  62. 62.
    V.V. Kiselev, Int. J. Mod. Phys. A 11, 3689 (1996).ADSCrossRefGoogle Scholar
  63. 63.
    V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsNorth China Electric Power UniversityBaodingP. R. China

Personalised recommendations