GARFIELD + RCo digital upgrade: A modern set-up for mass and charge identification of heavy-ion reaction products

  • M. Bruno
  • F. Gramegna
  • T. Marchi
  • L. Morelli
  • G. Pasquali
  • G. Casini
  • U. Abbondanno
  • G. Baiocco
  • L. Bardelli
  • S. Barlini
  • M. Bini
  • S. Carboni
  • M. Cinausero
  • M. D’Agostino
  • M. Degerlier
  • V. L. Kravchuk
  • E. Geraci
  • P. F. Mastinu
  • A. Ordine
  • S. Piantelli
  • G. Poggi
  • A. Moroni
Special Article - Tools for Experiment and Theory

Abstract

An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On the one hand fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other hand a relevant improvement has been made in the forward part of the set-up (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones planned for the SPES facility, where the physics of isospin can be studied.

References

  1. 1.
    Nupecc long range Plan 2010, www.nupecc.org.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    E. Rapisarda et al., Eur. Phys. J. ST 150, 169 (2007).CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    S. Aiello et al., Nucl. Phys. A 583, 461c (1995).ADSCrossRefGoogle Scholar
  10. 10.
    A. Pagano et al., Nucl. Phys. A 734, 504 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. Pagano, Nucl. Phys. News 22, 28 (2012).Google Scholar
  12. 12.
    J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    S. Wuenschel et al., Nucl. Instrum. Methods A 604, 578 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M.S. Wallace et al., Nucl. Instrum. Methods A 583, 302 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    C.A.J. Amerlaan et al., Nucl. Instrum. Methods 22, 189 (1963).ADSCrossRefGoogle Scholar
  16. 16.
    G. Pausch et al., Nucl. Instrum. Methods A 322, 43 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    M. Mutterer et al., Nucl. Instrum. Methods A 608, 275 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Duenas et al., Nucl. Instrum. Methods A 676, 70 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    FAZIA Collaboration, www.fazia2.in2p3.fr/spip.
  20. 20.
    F. Gramegna et al., Nucl. Instrum. Methods A 389, 474 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    F. Gramegna et al., IEEE Nucl. Sci. Symp. Conf. Proc. 2, 1132 (2004) DOI:10.1109/NSSMIC.2004.1462402.Google Scholar
  22. 22.
    A. Moroni et al., Nucl. Instrum. Methods A 556, 516 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    M. Chiari et al., Nucl. Instrum. Methods A 484, 111 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    A. Wagner et al., Nucl. Instrum. Methods A 456, 290 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    L. Morelli et al., Nucl. Instrum. Methods A 620, 305 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    V.L. Kravchuck et al., Int. J. Mod. Phys. E 20, 1050 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    M. Bini et al., Nucl. Instrum. Methods A 515, 497 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. Maj et al., Nucl. Phys. A 571, 185 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    M. Kmiecik et al., Phys. Rev. C 70, 054317 (2004).CrossRefGoogle Scholar
  30. 30.
    O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    A. Corsi et al., Phys. Rev. C 84, 041304 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    S. Barlini et al., Acta Phys. Pol. B 42, 639 (2011).CrossRefGoogle Scholar
  33. 33.
    A. Corsi et al., Phys. Lett. B 679, 197 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    M. D’Agostino et al., Nucl. Phys. A 861, 47 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    M. D’Agostino et al., Nucl. Phys. A 875, 139 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    G. Baiocco et al., Phys. Rev. C 87, 054614 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    Purchased from Canberra Olen (Belgium).Google Scholar
  40. 40.
    R. Bassini et al., Nucl. Instrum. Methods A 305, 449 (1991).ADSCrossRefGoogle Scholar
  41. 41.
    A. Ordine et al., IEEE Trans. Nucl. Sci. NS45(3), 873 (1998).ADSCrossRefGoogle Scholar
  42. 42.
    F. Benrachi et al., Nucl. Instrum. Methods A 281, 137 (1989).ADSCrossRefGoogle Scholar
  43. 43.
    L. Bardelli et al., Nucl. Instrum. Methods A 560, 517 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    L. Bardelli et al., Nucl. Instrum. Methods A 560, 524 (2006).ADSCrossRefGoogle Scholar
  45. 45.
    B. Onori, 3-year thesis Bologna University (2010).Google Scholar
  46. 46.
    M. Bruno, 2009 INFN-LNL Annual Report.Google Scholar
  47. 47.
    F. Tonetto et al., Nucl. Instrum. Methods A 420, 181 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    L. Bardelli et al., Nucl. Instrum. Methods A 521, 480 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    N. Leneindre et al., Nucl. Instrum. Methods A 490, 251 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    P.F. Mastinu, P.M. Milazzo, M. Bruno, M. D’Agostino, Nucl. Instrum. Methods A 371, 510 (1996).ADSCrossRefGoogle Scholar
  51. 51.
    M. Alderighi et al., Nucl. Instrum. Methods A 489, 257 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    R.A. Winyard et al., Nucl. Instrum. Methods 95, 141 (1971).ADSCrossRefGoogle Scholar
  54. 54.
    L. Bardelli et al., Nucl. Instrum. Methods A 602, 501 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    N. LeNeindre et al., Nucl. Instrum. Methods A 701, 145 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    M. Degerlier Eurisol Town Meeting, Pisa, Italy (2009).ADSCrossRefGoogle Scholar
  58. 58.
  59. 59.
    Supplied by MILLIPORE Italia SpA.Google Scholar
  60. 60.
    M. Barbui et al., Nucl. Instrum. Methods B 268, 2377 (2010).ADSCrossRefGoogle Scholar
  61. 61.
    M. Zadro et al., Nucl. Instrum. Methods B 259, 836 (2007).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Bruno
    • 1
  • F. Gramegna
    • 2
  • T. Marchi
    • 2
    • 3
  • L. Morelli
    • 1
  • G. Pasquali
    • 4
    • 5
  • G. Casini
    • 4
  • U. Abbondanno
    • 6
  • G. Baiocco
    • 1
  • L. Bardelli
    • 4
    • 5
  • S. Barlini
    • 4
    • 5
  • M. Bini
    • 4
    • 5
  • S. Carboni
    • 4
    • 5
  • M. Cinausero
    • 2
  • M. D’Agostino
    • 1
  • M. Degerlier
    • 2
  • V. L. Kravchuk
    • 2
  • E. Geraci
    • 1
  • P. F. Mastinu
    • 2
  • A. Ordine
    • 7
  • S. Piantelli
    • 4
  • G. Poggi
    • 4
    • 5
  • A. Moroni
    • 8
  1. 1.Sezione di Bologna and Dipartimento di Fisica ed Astronomia dell’UniversitàINFNBolognaItaly
  2. 2.Laboratori Nazionali di LegnaroINFNLegnaroItaly
  3. 3.Dipartimento di Fisica ed Astronomia dell’UniversitàPadovaItaly
  4. 4.Sezione di FirenzeINFNFirenzeItaly
  5. 5.Dipartimento di Fisica ed Astronomia dell’UniversitàFirenzeItaly
  6. 6.Sezione di TriesteINFNTriesteItaly
  7. 7.Sezione di NapoliINFNNapoliItaly
  8. 8.Sezione di MilanoINFNMilanoItaly

Personalised recommendations