Advertisement

Systematic study of hypernuclear magnetic moments under a perturb treatment

  • X. S. Wang
  • H. Y. Sang
  • H. F. Lü
  • J. M. Yao
  • H. Sagawa
Regular Article - Theoretical Physics

Abstract

Hypernuclei ranged from light to heavy mass are systematically investigated using a relativistic mean-field (RMF) model with a novel proposed ωΛΛ tensor coupling interaction PK1-Y1. The tensor coupling effect on core polarization, and the orbital contribution to hyperon current are discussed. Contributions to the magnetic moment from and n −1 Λ systems are found to be opposite. An expression of the magnetic moment under perturb treatment is improved with an ωΛΛ tensor coupling and the core-polarized magnetic moment μ D pol. is found to be approximately proportional to the coupling strength g ωN · g ωλ 2 . Self-consistent calculations under a perturb treatment show a semi-linear relationship as μ D pol. g ωλ when g ωN is fixed.

Keywords

Core Polarization Orbital Contribution Tensor Coupling Perturb Treatment Valence Nucleon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    T. Nagae, Nucl. Phys. A 805, 486c (2008).ADSCrossRefGoogle Scholar
  3. 3.
    The HypHI Collaboration (T. Fukuda, T. Saito), Nucl. Phys. A 790, 161 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    P. Achenbach et al., IEEE Trans. Nucl. Sci. 56, 316 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    T. Yamazaki, Phys. Lett. B 160, 227 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Tanaka, Prog. Theor. Phys. 82, 96 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Tanaka, Phys. Lett. B 227, 195 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    H. Margenau, Phys. Rev. 57, 383 (1940).ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Furnstahl, B.D. Serot, Nucl. Phys. A 468, 539 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (Mc-. Graw Hill, New York, 1964).Google Scholar
  11. 11.
    B.K. Jennings, Phys. Lett. B 246, 325 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    A.O. Gattone, M. Chiapparini, E.D. Izquierdo, Phys. Rev. C 44, 548 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    J. Cohen, Phys. Rev. C 48, 1346 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Yao, H.F. Lü, G. Hillhouse, J. Meng, Chin. Phys. Lett. 25, 1629 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    X. Wang, submitted to Commun. Theor. Phys. (2013).Google Scholar
  16. 16.
    J. Cohen, R.J. Furnstahl, Phys. Rev. C 35, 2231 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    J. Cohen, H.J. Weber, Phys. Rev. C 44, 1181 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    M. Chiapparini, A.O. Gattone, B.K. Jennings, Nucl. Phys. A 529, 589 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    W.H. Long, J. Meng, N. Van Giai, S.-G. Zhou, Phys. Rev. C 69, 034319 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986).ADSGoogle Scholar
  22. 22.
    M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    N.J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (2001).Google Scholar
  24. 24.
    J. Cohen, J.V. Noble, Phys. Rev. C 46, 801 (1992).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • X. S. Wang
    • 1
  • H. Y. Sang
    • 1
  • H. F. Lü
    • 1
  • J. M. Yao
    • 2
  • H. Sagawa
    • 3
  1. 1.College of ScienceChina Agriculture UniversityBeijingChina
  2. 2.School of Physical Science and TechnologySouthwest University400715China
  3. 3.Center for Mathematical SciencesUniversity of Aizu965-8580Japan

Personalised recommendations