Dissecting deuteron Compton scattering I: The observables with polarised initial states
- 89 Downloads
- 3 Citations
Abstract
A complete set of linearly independent observables in Compton scattering with arbitrarily polarised real photons off an arbitrarily polarised spin-1 target is introduced, for the case that the final-state polarisations are not measured. Adopted from the one widely used, e.g., in deuteron photo-dissociation, it consists of 18 terms: the unpolarised cross section, the beam asymmetry, 4 target asymmetries and 12 asymmetries in which both beam and target are polarised. They are expressed by the helicity amplitudes and —where available— related to observables discussed by other authors. As application to deuteron Compton scattering, their dependence on the (isoscalar) scalar and spin dipole polarisabilities of the nucleon is explored in Chiral Effective Field Theory with dynamical Δ(1232) degrees of freedom at order e 2 δ 3. Some asymmetries are sensitive to only one or two dipole polarisabilities, making them particularly attractive for experimental studies. At a photon energy of 100 MeV, a set of 5 observables is identified from which one may be able to extract the spin polarisabilities of the nucleon. These are experimentally realistic but challenging and mostly involve tensor-polarised deuterons. Relative to Compton scattering from a nucleon, sensitivity to the “mixed” spin polarisabilities γ E1M2 and γ M1E2 is increased because of the interference with the D wave component of the deuteron and with its pion-exchange current. An interactive Mathematica 9.0 notebook with results for all observables at photon energies up to 120 MeV is available from hgrie@gwu.edu.
Keywords
Spin Polarisabilities Compton Scattering Helicity Amplitude Dipole Polarisabilities Deuteron Wave FunctionReferences
- 1.H.W. Griesshammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th].ADSCrossRefGoogle Scholar
- 2.H. Paetz gen. Schieck, Nuclear Physics with Polarized Particles, in Lecture Notes in Physics, Vol. 842 (Springer, 2012).Google Scholar
- 3.D.G. Crabb, private communication.Google Scholar
- 4.W. Meyer, private communication.Google Scholar
- 5.D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347.ADSCrossRefGoogle Scholar
- 6.J.W. Chen, X.d. Ji, Y.c. Li, Phys. Rev. C 71, 044321 (2005) arXiv:nucl-th/0408004.ADSCrossRefGoogle Scholar
- 7.J.-W. Chen, X.-d. Ji, Y.-c. Li, Phys. Lett. B 620, 33 (2005) arXiv:nucl-th/0408003.ADSCrossRefGoogle Scholar
- 8.D. Choudhury, D.R. Phillips, Phys. Rev. C 71, 044002 (2005) arXiv:nucl-th/0411001.ADSCrossRefGoogle Scholar
- 9.D. Choudhury, PhD Thesis Ohio University (2006).Google Scholar
- 10.H.W. Grießhammer, D. Shukla, Eur. Phys. J. A 46, 249 (2010) 48.ADSCrossRefGoogle Scholar
- 11.J.W. Chen, Nucl. Phys. A 653, 375 (1999) arXiv:nucl-th/9810021.ADSCrossRefGoogle Scholar
- 12.J. Karakowski, arXiv:nucl-th/9901011.
- 13.J.J. Karakowski, G.A. Miller, Phys. Rev. C 60, 014001 (1999) arXiv:nucl-th/9901018.ADSCrossRefGoogle Scholar
- 14.H. Arenhovel, M. Sanzone, Few-Body Syst. Suppl. 3, 1 (1991).CrossRefGoogle Scholar
- 15.H.W. Grießhammer, in preparation.Google Scholar
- 16.H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65, 045207 (2002) arXiv:nucl-th/0110006.ADSCrossRefGoogle Scholar
- 17.R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070.ADSCrossRefGoogle Scholar
- 18.B.R. Holstein, arXiv:hep-ph/0010129.
- 19.W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 81, 054502 (2010) arXiv:1001.1131 [hep-lat].ADSCrossRefGoogle Scholar
- 20.M. Engelhardt, PoS LATTICE 2011, 153 (2011) arXiv:1111.3686 [hep-lat].Google Scholar
- 21.M. Lujan, A. Alexandru, F. Lee, PoS LATTICE 2011, 165 (2011) arXiv:1111.6288 [hep-lat].Google Scholar
- 22.A. Walker-Loud, C.E. Carlson, G.A. Miller, Phys. Rev. Lett. 108, 232301 (2012) arXiv:1203.0254 [nucl-th].ADSCrossRefGoogle Scholar
- 23.K. Pachucki, Phys. Rev. A 60, 3593 (1999).ADSCrossRefGoogle Scholar
- 24.C.E. Carlson, M. Vanderhaeghen, arXiv:1109.3779 [physics.atom-ph].
- 25.M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012) arXiv:1206.3030 [hep-ph].ADSCrossRefGoogle Scholar
- 26.G.A. Miller, Phys. Lett. B 718, 1078 (2013) arXiv:1209.4667 [nucl-th].ADSCrossRefGoogle Scholar
- 27.V. Bernard, N. Kaiser, U.G. Meißner, Phys. Rev. Lett. 67, 1515 (1991).ADSCrossRefGoogle Scholar
- 28.V. Bernard, N. Kaiser, U.G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995) arXiv:hep-ph/9501384.ADSCrossRefGoogle Scholar
- 29.J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th].ADSCrossRefGoogle Scholar
- 30.M. Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005) arXiv:hep-ph/0501167.ADSCrossRefGoogle Scholar
- 31.H.W. Grießhammer, D.R. Phillips, J.A. McGovern, arXiv:1306.2200 [nucl-th].
- 32.M.E. Rose, Elementary Theory of Angular Momentum (Wiley, 1957).Google Scholar
- 33.A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1974).Google Scholar
- 34.Particle Data Group, Phys. Rev. D 86, 010001 (2012).CrossRefGoogle Scholar
- 35.R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 46, 111 (2010) arXiv:nucl-th/0512063.ADSCrossRefGoogle Scholar
- 36.R.P. Hildebrandt, Elastic Compton Scattering from the Nucleon and Deuteron, PhD Thesis Technische Universität München (2005) arXiv:nucl-th/0512064.
- 37.V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024.ADSCrossRefGoogle Scholar
- 38.H.W. Grießhammer, Proceedings Menu 2007, eConf section of the SLAC archive, arXiv:0710.2924.
- 39.H.W. Grießhammer, Prog. Part. Nucl. Phys. 55, 215 (2005) arXiv:nucl-th/0411080.ADSCrossRefGoogle Scholar
- 40.E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991).ADSCrossRefGoogle Scholar
- 41.E.E. Jenkins, A.V. Manohar, In Dobogokoe 1991, Proceedings, Effective field theories of the standard model 113 and Calif. Univ. San Diego - UCSD-PTH 91-30 (91/10, rec. Dec.) (201392) p. 26 (see conference index).Google Scholar
- 42.T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997) arXiv:hep-ph/9606456.ADSCrossRefGoogle Scholar
- 43.T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998) arXiv:hep-ph/9712496.ADSCrossRefGoogle Scholar
- 44.S.R. Beane, M. Malheiro, D.R. Phillips, U. van Kolck, Nucl. Phys. A 656, 367 (1999) arXiv:nucl-th/9905023.ADSCrossRefGoogle Scholar
- 45.J.L. Friar, Ann. Phys. (NY) 95, 170 (1975).ADSCrossRefGoogle Scholar
- 46.J.L. Friar, Phys. Rev. C 16, 1504 (1977).ADSCrossRefGoogle Scholar
- 47.H. Arenhovel, Z. Phys. A 297, 129 (1980).ADSCrossRefGoogle Scholar
- 48.M. Weyrauch, H. Arenhovel, Nucl. Phys. A 408, 425 (1983).ADSCrossRefGoogle Scholar
- 49.E. Epelbaum, W. Gloeckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000) arXiv:nucl-th/9910064.ADSCrossRefGoogle Scholar
- 50.R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).ADSCrossRefGoogle Scholar
- 51.R. Miskimen, Measuring the Spin-Polarizabilities of the Proton at , presentation at the INT workshop on Soft Photons and Light Nuclei, 17 June 2008, and private communication.Google Scholar
- 52.K. Aulenbacher, talk given at the Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams with Energy up to 300 MeV, MIT, 2013, in preparation.Google Scholar
- 53.L.C. Maximon, Phys. Rev. C 39, 347 (1989).ADSCrossRefGoogle Scholar
- 54.S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Nucl. Phys. A 747, 311 (2005) arXiv:nucl-th/0403088.ADSCrossRefGoogle Scholar
- 55.V.G. Stoks, R.A. Klomp, C.P. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).ADSCrossRefGoogle Scholar
- 56.R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, D.R. Phillips, Nucl. Phys. A 748, 573 (2005) arXiv:nucl-th/0405077.ADSCrossRefGoogle Scholar
- 57.S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Phys. Lett. B 567, 200 (2003) arXiv:nucl-th/0209002.ADSCrossRefGoogle Scholar
- 58.D.L. Hornidge, B.J. Warkentin, R. Igarashi, J.C. Bergstrom, E.L. Hallin, N.R. Kolb, R.E. Pywell, D.M. Skopik et al., Phys. Rev. Lett. 84, 2334 (2000) arXiv:nucl-ex/9909015.ADSCrossRefGoogle Scholar
- 59.M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066.ADSCrossRefGoogle Scholar