Determination of the 237Np(n,f) reaction cross section for En = 4.5-5.3 MeV, using a MicroMegas detector assembly

  • M. Diakaki
  • M. Kokkoris
  • A. Kyrtsos
  • E. Skordis
  • C. T. Papadopoulos
  • R. Vlastou
  • A. Lagoyannis
  • S. Andriamonje
Regular Article - Experimental Physics


In the present work, the measurement of the 237Np(n,f) cross section with reference to the standard 238U(n,f) reaction was performed for the first time with a MicroMegas detector, especially developed at CERN, for these measurements, within the framework of the n_TOF Collaboration. The incident monoenergetic neutron beam with energies in the range 4.5-5.3MeV was produced via the 2H(d,n) reaction at the neutron facility of the 5.5MV Tandem accelerator laboratory at NCSR “Demokritos”. The mass of the actinide content of the targets used and of their impurities was quantitatively determined via alpha spectroscopy. Furthermore, their thickness and homogeneity have been examined via the RBS (Rutherford Backscattering Spectrometry) technique. Monte Carlo simulations were carried out using the code MCNP5 implementing the neutron beam setup and the MicroMegas assembly in order to determine the neutron flux for each target, as well as the existence of possible low-energy neutrons due to scattering. Additional simulations with FLUKA were performed, studying the energy deposition of the fission fragments in the active area of the detector, in order to accurately estimate the detection efficiency. Fair discrimination of the heavy and light mass peaks of the fission fragments at the energy spectra was achieved. The present work is compared to existing evaluations and previous data which present discrepancies of up to 8% within the same energy range.


Neutron Beam 237Np Rutherford Backscatter Spectrometry 238U Target Actinide Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    The n_TOF Collaboration (C. Paradela et al.), Phys. Rev C 82, 034601 (2010)CrossRefGoogle Scholar
  2. 2.
    F. Tovesson, T.S. Hill, Phys. Rev. C 75, 034610 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    O. Shcherbakov, A. Donets, A. Evdokimov, A. Fomichev, T. Fukahori, A. Hasegawa, A. Laptev, V. Maslov, G. Petrov, S. Soloviev, Y. Tuboltsev, A. Vorobyev, J. Nucl. Sci. Tech. Suppl. 2, 230 (2002)Google Scholar
  4. 4.
    K. Merla, P. Hausch, C. Herbach, G. Musiol, G. Pausch, U. Todt, L. Drapchinskiy, V. Kalinin, V. Shpakov, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Jülich, Germany (1991), edited by R. Haight, M. Chadwick, T. Kawano P. Talou (American Institute of Physics, College Park, MD, 2005) p. 510Google Scholar
  5. 5.
    P. Lisowski, J. Ullman, S. Balestrini, A. Carlson, O. Wasson, N. Hill, in Conference on Nuclear Data for Science and Technology, Mito 1988, edited by S. Igarasi (Japan Atomic Energy Research Institute, 1988) p. 97Google Scholar
  6. 6.
    H. Terayama, Y. Karino, F. Manabe, M. Yanagawa, K. Kanda, N. Hirakawa, Technical Report 47, Internal Tohoku University Reports (1986)Google Scholar
  7. 7.
    A.A. Goverdovskii, A.K. Gordyushin, B.D. Kuzminov, V.F. Mitrofanov, A.I. Sergachev, S.M. Solovev, G.M. Stepchenkova, Sov. At. Energy 58, 137 (1985)CrossRefGoogle Scholar
  8. 8.
    W. Jingxia, R.Chaofan, S. Zhongfa, L. Jingwen, Y. Zongyuan, D. Xinlu, Chin. J. Nucl. Phys. 6, 369 (1984)Google Scholar
  9. 9.
    J.W. Meadows, Nucl. Sci. Eng. 85, 271 (1983)Google Scholar
  10. 10.
    J. Behrens, J. Browne, J. Walden, Nucl. Sci. Eng. 80, 271 (1983)Google Scholar
  11. 11.
    K. Kobayashi, I. Kimura, H. Gotoh, H. Yagi, Technical Report 6, Kyoto University, Research Reactor Institute (1973)Google Scholar
  12. 12.
    R. Jiacoletti, W. Brown, H. Olson, Nucl. Sci. Eng 48, 412 (1972)Google Scholar
  13. 13.
    W.E. Stein, R.K. Smith, H.L. Smith, Technical Report 9205, Los Alamos Scientific Laboratory (1968)Google Scholar
  14. 14.
    J. Grundl, Nucl. Sci. Eng. 30, 30 (1967)Google Scholar
  15. 15.
    P.H. White, G.P. Warner, J. Nucl. Energy 21, (1967)Google Scholar
  16. 16.
    H.W. Schmitt, R.B. Murray, Phys. Rev. 116, 1575 (1959)ADSCrossRefGoogle Scholar
  17. 17.
    M.B. Chadwick et al., Nuclear Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Giomataris, Ph. Rebourgeard, J.P. Robert, G. Charpak, Nucl. Instrum. Methods A 376, 29 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    The n_TOF Collaboration (S. Andriamonje et al.), J. Korean Phys. Soc. 59, 1597 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Vourvopoulos, T. Paradellis, A. Asthenopoulos, Nucl. Instrum. Methods A 220, 23 (1984)CrossRefGoogle Scholar
  22. 22.
    R. Vlastou, M. Kokkoris, M. Diakaki, Ch. Constantinou, C.A. Kalfas, A. Kotrotsou, A. Lagoyannis, M. Lambrou, V. Loizou, E. Mara, V. Paneta, G. Provatas, A. Tsinganis, Nucl. Instrum. Methods B 269, 3266 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    C. Rubbia, A high resolution spallation driven facility at the CERN-PS to measure neutron cross-sections in the Interval from 1 eV to 250 MeV, CERN/ LHC/98-02 (EET)Google Scholar
  24. 24.
    U. Abbondanno, n_TOF Performance Report. CERN/INTC-O-011 INTC-2002, 2002, p. 037Google Scholar
  25. 25.
  26. 26.
    A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, CERN-2005-10 (2005) INFN/TC_05/11, SLAC-R-773Google Scholar
  27. 27.
    G.D. Adeev, A method of calculation of mass and energy distributions of fission residuals in reactions induced by intermediate energy particles, Preprint INR RAS 861/93 (1993)Google Scholar
  28. 28.
    F.-J. Hambsch, F. Vives, P. Siegler, S. Oberstedt, Nucl. Phys. A 679, 3 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    R.B. Gardner, K. Verghese, H.M. Lee, Nucl. Instrum. Methods 176, 615 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    MCNPX, Version 2.5.0, LA-CP-05-0369 (Los Alamos National Laboratory, April 2005)Google Scholar
  31. 31.
    D. Sokaras, E. Bistekos, L. Georgiou, J. Salomon, M. Bogovac, E.A.-Siotis, V. Paschalis, I. Aslani, S. Karabagia, A. Lagoyannis, S. Harissopulos, V. Kantarelou, A.-G. Karydas, Nucl. Instrum. Methods B 269, 519 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mayer, AIP Conf. Proc. 475, 541 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids (Pergamon Press, New York, 1985)Google Scholar
  34. 34.
    F.B. Brown, R.F. Barrett, T.E. Booth, J.S. Bull, L.J. Cox, R.A. Forster, T.J. Goorley, R.D. Mosteller, S.E. Post, R.E. Prael, E.C. Selcow, A. Sood, J. Sweezy, Trans. Am. Nucl. Soc. 87, 273 (2002)Google Scholar
  35. 35.
    H. Liskien, A. Paulsen, Nucl. Data Tables 11, 569 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    S. Kumar, G.L.N. Reddy, P. Rao, R. Verma, J.V. Ramana, S. Vikramkumar, V.S. Raju, Nucl. Instrum. Methods B 274, 154 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J.E. Naya, P. Jean, J. Bockholt, P. von Ballmoos, G. Vedrenne, J. Matteson, Nucl. Instrum. Methods A 368, 832 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    G. Meierhofer, P. Grabmayr, J. Jochum, P. Kudejova, L. Canella, J. Jolie, Phys. Rev. C 81, 027603 (2010)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    V.M. Pankratov et al., At. Energy 9, 399 (1960)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Diakaki
    • 1
  • M. Kokkoris
    • 1
  • A. Kyrtsos
    • 1
  • E. Skordis
    • 1
  • C. T. Papadopoulos
    • 1
  • R. Vlastou
    • 1
  • A. Lagoyannis
    • 2
  • S. Andriamonje
    • 3
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Institute of Nuclear Physics, NCSR “Demokritos”AthensGreece
  3. 3.Commissariat à l’ Énergie Atomique (CEA)SaclayFrance

Personalised recommendations