Skip to main content

Advertisement

Log in

Determination of the 237Np(n,f) reaction cross section for En = 4.5-5.3 MeV, using a MicroMegas detector assembly

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work, the measurement of the 237Np(n,f) cross section with reference to the standard 238U(n,f) reaction was performed for the first time with a MicroMegas detector, especially developed at CERN, for these measurements, within the framework of the n_TOF Collaboration. The incident monoenergetic neutron beam with energies in the range 4.5-5.3MeV was produced via the 2H(d,n) reaction at the neutron facility of the 5.5MV Tandem accelerator laboratory at NCSR “Demokritos”. The mass of the actinide content of the targets used and of their impurities was quantitatively determined via alpha spectroscopy. Furthermore, their thickness and homogeneity have been examined via the RBS (Rutherford Backscattering Spectrometry) technique. Monte Carlo simulations were carried out using the code MCNP5 implementing the neutron beam setup and the MicroMegas assembly in order to determine the neutron flux for each target, as well as the existence of possible low-energy neutrons due to scattering. Additional simulations with FLUKA were performed, studying the energy deposition of the fission fragments in the active area of the detector, in order to accurately estimate the detection efficiency. Fair discrimination of the heavy and light mass peaks of the fission fragments at the energy spectra was achieved. The present work is compared to existing evaluations and previous data which present discrepancies of up to 8% within the same energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The n_TOF Collaboration (C. Paradela et al.), Phys. Rev C 82, 034601 (2010)

    Article  Google Scholar 

  2. F. Tovesson, T.S. Hill, Phys. Rev. C 75, 034610 (2007)

    Article  ADS  Google Scholar 

  3. O. Shcherbakov, A. Donets, A. Evdokimov, A. Fomichev, T. Fukahori, A. Hasegawa, A. Laptev, V. Maslov, G. Petrov, S. Soloviev, Y. Tuboltsev, A. Vorobyev, J. Nucl. Sci. Tech. Suppl. 2, 230 (2002)

    Google Scholar 

  4. K. Merla, P. Hausch, C. Herbach, G. Musiol, G. Pausch, U. Todt, L. Drapchinskiy, V. Kalinin, V. Shpakov, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Jülich, Germany (1991), edited by R. Haight, M. Chadwick, T. Kawano P. Talou (American Institute of Physics, College Park, MD, 2005) p. 510

  5. P. Lisowski, J. Ullman, S. Balestrini, A. Carlson, O. Wasson, N. Hill, in Conference on Nuclear Data for Science and Technology, Mito 1988, edited by S. Igarasi (Japan Atomic Energy Research Institute, 1988) p. 97

  6. H. Terayama, Y. Karino, F. Manabe, M. Yanagawa, K. Kanda, N. Hirakawa, Technical Report 47, Internal Tohoku University Reports (1986)

  7. A.A. Goverdovskii, A.K. Gordyushin, B.D. Kuzminov, V.F. Mitrofanov, A.I. Sergachev, S.M. Solovev, G.M. Stepchenkova, Sov. At. Energy 58, 137 (1985)

    Article  Google Scholar 

  8. W. Jingxia, R.Chaofan, S. Zhongfa, L. Jingwen, Y. Zongyuan, D. Xinlu, Chin. J. Nucl. Phys. 6, 369 (1984)

    Google Scholar 

  9. J.W. Meadows, Nucl. Sci. Eng. 85, 271 (1983)

    Google Scholar 

  10. J. Behrens, J. Browne, J. Walden, Nucl. Sci. Eng. 80, 271 (1983)

    Google Scholar 

  11. K. Kobayashi, I. Kimura, H. Gotoh, H. Yagi, Technical Report 6, Kyoto University, Research Reactor Institute (1973)

  12. R. Jiacoletti, W. Brown, H. Olson, Nucl. Sci. Eng 48, 412 (1972)

    Google Scholar 

  13. W.E. Stein, R.K. Smith, H.L. Smith, Technical Report 9205, Los Alamos Scientific Laboratory (1968)

  14. J. Grundl, Nucl. Sci. Eng. 30, 30 (1967)

    Google Scholar 

  15. P.H. White, G.P. Warner, J. Nucl. Energy 21, (1967)

  16. H.W. Schmitt, R.B. Murray, Phys. Rev. 116, 1575 (1959)

    Article  ADS  Google Scholar 

  17. M.B. Chadwick et al., Nuclear Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  18. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  19. Y. Giomataris, Ph. Rebourgeard, J.P. Robert, G. Charpak, Nucl. Instrum. Methods A 376, 29 (1996)

    Article  ADS  Google Scholar 

  20. The n_TOF Collaboration (S. Andriamonje et al.), J. Korean Phys. Soc. 59, 1597 (2011)

    Article  Google Scholar 

  21. G. Vourvopoulos, T. Paradellis, A. Asthenopoulos, Nucl. Instrum. Methods A 220, 23 (1984)

    Article  Google Scholar 

  22. R. Vlastou, M. Kokkoris, M. Diakaki, Ch. Constantinou, C.A. Kalfas, A. Kotrotsou, A. Lagoyannis, M. Lambrou, V. Loizou, E. Mara, V. Paneta, G. Provatas, A. Tsinganis, Nucl. Instrum. Methods B 269, 3266 (2011)

    Article  ADS  Google Scholar 

  23. C. Rubbia, A high resolution spallation driven facility at the CERN-PS to measure neutron cross-sections in the Interval from 1 eV to 250 MeV, CERN/ LHC/98-02 (EET)

  24. U. Abbondanno, n_TOF Performance Report. CERN/INTC-O-011 INTC-2002, 2002, p. 037

  25. http://www-nds.iaea.org

  26. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, CERN-2005-10 (2005) INFN/TC_05/11, SLAC-R-773

  27. G.D. Adeev, A method of calculation of mass and energy distributions of fission residuals in reactions induced by intermediate energy particles, Preprint INR RAS 861/93 (1993)

  28. F.-J. Hambsch, F. Vives, P. Siegler, S. Oberstedt, Nucl. Phys. A 679, 3 (2000)

    Article  ADS  Google Scholar 

  29. R.B. Gardner, K. Verghese, H.M. Lee, Nucl. Instrum. Methods 176, 615 (1980)

    Article  ADS  Google Scholar 

  30. MCNPX, Version 2.5.0, LA-CP-05-0369 (Los Alamos National Laboratory, April 2005)

  31. D. Sokaras, E. Bistekos, L. Georgiou, J. Salomon, M. Bogovac, E.A.-Siotis, V. Paschalis, I. Aslani, S. Karabagia, A. Lagoyannis, S. Harissopulos, V. Kantarelou, A.-G. Karydas, Nucl. Instrum. Methods B 269, 519 (2011)

    Article  ADS  Google Scholar 

  32. M. Mayer, AIP Conf. Proc. 475, 541 (1999)

    Article  ADS  Google Scholar 

  33. J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids (Pergamon Press, New York, 1985)

  34. F.B. Brown, R.F. Barrett, T.E. Booth, J.S. Bull, L.J. Cox, R.A. Forster, T.J. Goorley, R.D. Mosteller, S.E. Post, R.E. Prael, E.C. Selcow, A. Sood, J. Sweezy, Trans. Am. Nucl. Soc. 87, 273 (2002)

    Google Scholar 

  35. H. Liskien, A. Paulsen, Nucl. Data Tables 11, 569 (1973)

    Article  ADS  Google Scholar 

  36. S. Kumar, G.L.N. Reddy, P. Rao, R. Verma, J.V. Ramana, S. Vikramkumar, V.S. Raju, Nucl. Instrum. Methods B 274, 154 (2012)

    Article  ADS  Google Scholar 

  37. J.E. Naya, P. Jean, J. Bockholt, P. von Ballmoos, G. Vedrenne, J. Matteson, Nucl. Instrum. Methods A 368, 832 (1996)

    Article  ADS  Google Scholar 

  38. G. Meierhofer, P. Grabmayr, J. Jochum, P. Kudejova, L. Canella, J. Jolie, Phys. Rev. C 81, 027603 (2010)

    Article  ADS  Google Scholar 

  39. http://www.nndc.bnl.gov/exfor

  40. V.M. Pankratov et al., At. Energy 9, 399 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diakaki.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diakaki, M., Kokkoris, M., Kyrtsos, A. et al. Determination of the 237Np(n,f) reaction cross section for En = 4.5-5.3 MeV, using a MicroMegas detector assembly. Eur. Phys. J. A 49, 62 (2013). https://doi.org/10.1140/epja/i2013-13062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13062-3

Keywords

Navigation