Advertisement

Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

  • S. Corradetti
  • L. Biasetto
  • M. Manzolaro
  • D. Scarpa
  • S. Carturan
  • A. Andrighetto
  • G. Prete
  • J. Vasquez
  • P. Zanonato
  • P. Colombo
  • C. U. Jost
  • D. W. Stracener
Special Article - Tools for Experiment and Theory

Abstract.

The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

Keywords

Uranium Method Phys Isotope Production Isotope Yield Extraction Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Orr, J. Phys. G 38, 020301 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Andrighetto et al., Nucl. Instrum. Methods Phys. Res. B 266, 4257 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Andrighetto et al., Eur. Phys. J. A 30, 591 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A. Andrighetto et al., Nucl. Phys. A 834, 754c (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Dombsky et al., Nucl. Instrum. Methods Phys. Res. B 204, 191 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 521, 72 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    H.L. Ravn et al., Nucl. Instrum. Methods Phys. Res. B 26, 183 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Greene et al., Nucl. Instrum. Methods Phys. Res. B 241, 986 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    L. Biasetto et al., J. Nucl. Mater. 378, 180 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    L. Biasetto et al., J. Nucl. Mater. 385, 582 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Progelhof et al., J. Am. Ceram. Soci. 52, 227 (1969)CrossRefGoogle Scholar
  12. 12.
    L. Biasetto et al., J. Nucl. Mater. 404, 68 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhang et al., Science 285, 1719 (1999)CrossRefGoogle Scholar
  14. 14.
    Z. Jia et al., Mater. Sci. Eng. A 271, 395 (1999)CrossRefGoogle Scholar
  15. 15.
    Y. Liu et al., Carbon 43, 47 (2005)CrossRefGoogle Scholar
  16. 16.
    Z. Xia et al., Acta Mater. 52, 931 (2004)CrossRefGoogle Scholar
  17. 17.
    Y. Morisada et al., Mater. Sci. Eng. A 381, 57 (2004)CrossRefGoogle Scholar
  18. 18.
    D. Scarpa et al., Eur. Phys. J. A 47, 32 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    L. Biasetto et al., Eur. Phys. J. A 38, 167 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    B. Hy et al., Nucl. Instrum. Methods Phys. Res. B 288, 34 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Meigs et al., Nucl. Instrum. Methods Phys. Res. A 382, 51 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Beene et al., J. Phys. G 38, 024002 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Mlekodaj et al., Nucl. Instrum. Methods Phys. Res. 186, 239 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    H.K. Carter et al., Nucl. Instrum. Methods Phys. Res. B 126, 166 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    S. Corradetti et al., Eur. Phys. J. A 47, 119 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Barbui et al., Nucl. Instrum. Methods Phys. Res. B 266, 4289 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    National Nuclear Data Center, Nuclear structure and decay data (NuDat 2.6) www.nndc.bnl.gov/nudat2/ (2012)
  28. 28.
    K. Tsukada, unpublished calculations based on Y.L. Zhao, Comparison study of mass division phenomena in 7Li-induced 232Th and p-induced 238U-fission systems, PhD thesis, Tokyo Metropolitan University, Tokyo, Japan (1996)Google Scholar
  29. 29.
    C.M. Baglin, Nucl. Data Sheets 91, 423 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    G. Lhersonneau et al., Phys. Review C 74, 017308 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    A.E. Barzakh et al., Nucl. Instrum. Methods Phys. Res. B 126, 150 (1997)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Corradetti
    • 1
    • 2
  • L. Biasetto
    • 1
    • 3
  • M. Manzolaro
    • 1
  • D. Scarpa
    • 1
  • S. Carturan
    • 1
    • 4
  • A. Andrighetto
    • 1
  • G. Prete
    • 1
  • J. Vasquez
    • 1
    • 5
  • P. Zanonato
    • 2
  • P. Colombo
    • 6
  • C. U. Jost
    • 7
  • D. W. Stracener
    • 8
  1. 1.INFN Laboratori Nazionali di LegnaroLegnaroItaly
  2. 2.Dipartimento di Scienze ChimicheUniversità di PadovaPadovaItaly
  3. 3.Dipartimento di Tecnica e Gestione dei Sistemi IndustrialiUniversità di PadovaVicenzaItaly
  4. 4.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  5. 5.Dipartimento di Ingegneria dell’InformazioneUniversità di PadovaPadovaItaly
  6. 6.Dipartimento di Ingegneria IndustrialeUniversità di PadovaPadovaItaly
  7. 7.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  8. 8.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations