Skip to main content
Log in

Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Orr, J. Phys. G 38, 020301 (2011)

    Article  Google Scholar 

  2. A. Andrighetto et al., Nucl. Instrum. Methods Phys. Res. B 266, 4257 (2008)

    Article  ADS  Google Scholar 

  3. A. Andrighetto et al., Eur. Phys. J. A 30, 591 (2006)

    Article  ADS  Google Scholar 

  4. A. Andrighetto et al., Nucl. Phys. A 834, 754c (2010)

    Article  ADS  Google Scholar 

  5. M. Dombsky et al., Nucl. Instrum. Methods Phys. Res. B 204, 191 (2003)

    Article  ADS  Google Scholar 

  6. Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 521, 72 (2004)

    Article  ADS  Google Scholar 

  7. H.L. Ravn et al., Nucl. Instrum. Methods Phys. Res. B 26, 183 (1987)

    Article  ADS  Google Scholar 

  8. J.P. Greene et al., Nucl. Instrum. Methods Phys. Res. B 241, 986 (2005)

    Article  ADS  Google Scholar 

  9. L. Biasetto et al., J. Nucl. Mater. 378, 180 (2008)

    Article  ADS  Google Scholar 

  10. L. Biasetto et al., J. Nucl. Mater. 385, 582 (2009)

    Article  ADS  Google Scholar 

  11. R.C. Progelhof et al., J. Am. Ceram. Soci. 52, 227 (1969)

    Article  Google Scholar 

  12. L. Biasetto et al., J. Nucl. Mater. 404, 68 (2010)

    Article  ADS  Google Scholar 

  13. Y. Zhang et al., Science 285, 1719 (1999)

    Article  Google Scholar 

  14. Z. Jia et al., Mater. Sci. Eng. A 271, 395 (1999)

    Article  Google Scholar 

  15. Y. Liu et al., Carbon 43, 47 (2005)

    Article  Google Scholar 

  16. Z. Xia et al., Acta Mater. 52, 931 (2004)

    Article  Google Scholar 

  17. Y. Morisada et al., Mater. Sci. Eng. A 381, 57 (2004)

    Article  Google Scholar 

  18. D. Scarpa et al., Eur. Phys. J. A 47, 32 (2011)

    Article  ADS  Google Scholar 

  19. L. Biasetto et al., Eur. Phys. J. A 38, 167 (2008)

    Article  ADS  Google Scholar 

  20. B. Hy et al., Nucl. Instrum. Methods Phys. Res. B 288, 34 (2012)

    Article  ADS  Google Scholar 

  21. M.J. Meigs et al., Nucl. Instrum. Methods Phys. Res. A 382, 51 (1996)

    Article  ADS  Google Scholar 

  22. J.R. Beene et al., J. Phys. G 38, 024002 (2011)

    Article  ADS  Google Scholar 

  23. R.L. Mlekodaj et al., Nucl. Instrum. Methods Phys. Res. 186, 239 (1981)

    Article  ADS  Google Scholar 

  24. H.K. Carter et al., Nucl. Instrum. Methods Phys. Res. B 126, 166 (1997)

    Article  ADS  Google Scholar 

  25. S. Corradetti et al., Eur. Phys. J. A 47, 119 (2011)

    Article  ADS  Google Scholar 

  26. M. Barbui et al., Nucl. Instrum. Methods Phys. Res. B 266, 4289 (2008)

    Article  ADS  Google Scholar 

  27. National Nuclear Data Center, Nuclear structure and decay data (NuDat 2.6) www.nndc.bnl.gov/nudat2/ (2012)

  28. K. Tsukada, unpublished calculations based on Y.L. Zhao, Comparison study of mass division phenomena in 7Li-induced 232Th and p-induced 238U-fission systems, PhD thesis, Tokyo Metropolitan University, Tokyo, Japan (1996)

  29. C.M. Baglin, Nucl. Data Sheets 91, 423 (2000)

    Article  ADS  Google Scholar 

  30. G. Lhersonneau et al., Phys. Review C 74, 017308 (2006)

    Article  ADS  Google Scholar 

  31. A.E. Barzakh et al., Nucl. Instrum. Methods Phys. Res. B 126, 150 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Corradetti.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corradetti, S., Biasetto, L., Manzolaro, M. et al. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype. Eur. Phys. J. A 49, 56 (2013). https://doi.org/10.1140/epja/i2013-13056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13056-1

Keywords

Navigation