On chiral corrections to nucleon GPD

Regular Article - Theoretical Physics

Abstract

Within the heavy baryon chiral perturbation theory we derive the leading chiral correction to the nucleon GPD at γ=0 . We discuss the difficulties of consideration non-local light-cone operators within heavy baryon approach and the methods to solve the difficulties. The consideration of the chiral corrections directly for non-local operators allows to resolve the ambiguity of the inverse Mellin transformation. In particular, we show that the mixing between axial and vector GPDs are of order m π 2 /M N 2 , which is two orders of magnitude less that it follows from the calculation of Mellin moments.

Keywords

Parton Distribution Chiral Limit Heavy Baryon Counting Rule Chiral Expansion 

References

  1. 1.
    A.V. Belitsky, X. Ji, Phys. Lett. B 538, 289 (2002) hep-ph/0203276ADSCrossRefGoogle Scholar
  2. 2.
    N. Kivel, M.V. Polyakov, S. Stratmann, nucl-th/0407052Google Scholar
  3. 3.
    M. Diehl, A. Manashov, A. Schafer, Eur. Phys. J. A 31, 335 (2007) hep-ph/0611101ADSCrossRefGoogle Scholar
  4. 4.
    M. Diehl, A. Manashov, A. Schafer, Eur. Phys. J. A 29, 315 (2006) hep-ph/0608113ADSCrossRefGoogle Scholar
  5. 5.
    S.-i. Ando, J.-W. Chen, C.-W. Kao, Phys. Rev. D 74, 094013 (2006) hep-ph/0602200ADSCrossRefGoogle Scholar
  6. 6.
    M. Dorati, T. A. Gail, T. R. Hemmert, Nucl. Phys. A 798, 96 (2008) nucl-th/0703073ADSCrossRefGoogle Scholar
  7. 7.
    M. Diehl, A. Manashov, A. Schafer, Phys. Lett. B 622, 69 (2005) hep-ph/0505269ADSCrossRefGoogle Scholar
  8. 8.
    N. Kivel, M.V. Polyakov, hep-ph/0203264Google Scholar
  9. 9.
    N. Kivel, M.V. Polyakov, Phys. Lett. B 664, 64 (2008) arXiv:0707.2208 [hep-ph]ADSCrossRefGoogle Scholar
  10. 10.
    N. Kivel, M.V. Polyakov, A. Vladimirov, Phys. Rev. D 79, 014028 (2009) arXiv:0809.2064 [hep-ph]ADSCrossRefGoogle Scholar
  11. 11.
    M. Strikman, C. Weiss, Phys. Rev. D 80, 114029 (2009) arXiv:0906.3267 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    M. Alberg, G.A. Miller, Phys. Rev. Lett. 108, 172001 (2012) arXiv:1201.4184 [nucl-th]ADSCrossRefGoogle Scholar
  13. 13.
    N. Kivel, M.V. Polyakov, A. Vladimirov, Phys. Rev. Lett. 101, 262001 (2008) arXiv:0809.3236 [hep-ph]ADSCrossRefGoogle Scholar
  14. 14.
    I.A. Perevalova, M.V. Polyakov, A.N. Vall, A.A. Vladimirov, arXiv:1105.4990 [hep-ph]
  15. 15.
    M.R. Schindler, J. Gegelia, S. Scherer, Phys. Lett. B 586, 258 (2004) hep-ph/0309005ADSCrossRefGoogle Scholar
  16. 16.
    T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003) hep-ph/0302117ADSCrossRefGoogle Scholar
  17. 17.
    T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999) hep-ph/9901384ADSGoogle Scholar
  18. 18.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    V. Bernard, N. Kaiser, J. Kambor, U.G. Meissner, Nucl. Phys. B 388, 315 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Radyushkin, Phys. Rev. D 58, 114008 (1998) hep-ph/9803316ADSCrossRefGoogle Scholar
  21. 21.
    V. Bernard, H.W. Fearing, T.R. Hemmert, U.G. Meissner, Nucl. Phys. A 635, 121 (1998) 642ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute für Theoretische Physik IIRuhr-Universität BochumBochumGermany

Personalised recommendations