Advertisement

An endoscopic detector for ultracold neutrons

  • L. Göltl
  • Z. Chowdhuri
  • M. Fertl
  • F. Gray
  • R. Henneck
  • K. Kirch
  • B. Lauss
  • T. Lefort
  • A. Mtchedlishvili
  • P. Schmidt-Wellenburg
  • G. Zsigmond
Special Article - Tools for Experiment and Theory

Abstract

A new versatile detector for ultracold neutrons (UCN) has been built and operated which combines multi-pixel photon counters and GS10 lithium-doped scintillators. Such detectors can be very small and can be used to monitor UCN inside storage vessels or guides with negligible influence (of order 10−6 on the UCN intensity itself. We have shown that such detectors can be used in a very harsh radiation environment of up to 200Gy/h via the addition of a 4m long quartz light guide in order to place the radiation-sensitive photon counters outside the hot zone. Additionally we have measured the UCN storage times in situ in this harsh environment.

Keywords

Light Guide Paul Scherrer Institute Storage Vessel Ultracold Neutron Neutron Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Ban et al., J. Res. Natl. Inst. Stand. Technol. 110, 283 (2005).CrossRefGoogle Scholar
  2. 2.
    D. Renker, Nucl. Instrum. Methods A 567, 48 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    R. Golub, D. Richardson, S. Lamoreaux, Ultra-Cold Neutrons (Adam Hilger, Publishing Ltd, 1991).Google Scholar
  4. 4.
    A. Anghel et al., Nucl. Instrum. Methods A 611, 272 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    B. Lauss, J. Phys. Conf. Ser. 312, 052005 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    B. Lauss, Hyperfine Interact. 211, 21 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. Wohlmuther, S. Teichmann, Calculation of the dose delivered at the UCN guide west, Paul Scherrer Institut, Technical Memo TM-85-07-03 (2007).Google Scholar
  8. 8.
    Datasheet: Lithium glass scintillators (GS10), Applied Scintillation Technologies. .Google Scholar
  9. 9.
    G. Ban et al., Nucl. Instrum. Methods A 611, 280 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Datasheet: Specialty fiber preforms for the most demanding applications, Heraeus Quarzglas Gmbh & Co KG.Google Scholar
  11. 11.
    I. Nakamura, Nucl. Instrum. Methods A 610, 110 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. Bertsch, L. Goeltl, K. Kirch, B. Lauss, R. Zubler, Nucl. Instrum. Methods A 602, 552 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V.A. Andreev et al., Phys. Rev. Lett. 99, 032002 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    A. Steyerl et al., Phys. Lett. A 116, 347 (1986).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Göltl
    • 1
    • 2
  • Z. Chowdhuri
    • 1
  • M. Fertl
    • 1
    • 2
  • F. Gray
    • 3
  • R. Henneck
    • 1
  • K. Kirch
    • 1
    • 2
  • B. Lauss
    • 1
  • T. Lefort
    • 4
  • A. Mtchedlishvili
    • 1
  • P. Schmidt-Wellenburg
    • 1
  • G. Zsigmond
    • 1
  1. 1.Laboratory for Particle PhysicsPaul Scherrer InstituteVilligen-PSISwitzerland
  2. 2.Institute for Particle PhysicsZürichSwitzerland
  3. 3.Regis UniversityDenverUSA
  4. 4.Laboratoire de Physique CorpusculaireUniversité de Caen, CNRS/IN2P3CaenFrance

Personalised recommendations