Advertisement

Hadron physics potential of future high-luminosity B-factories at the ϒ(5S) and above

  • A. G. Drutskoy
  • F. -K. Guo
  • F. J. Llanes-Estrada
  • A. V. Nefediev
  • J. M. Torres-Rincon
Review

Abstract

We point out the physics opportunities of future high-luminosity B-factories at the ϒ(5S) resonance and above. Currently the two B-factories, the SuperB factory in Tor Vergata, Italy and the Belle II factory in KEK, Japan, are under development and are expected to start operation in 2017 and 2016, respectively. In this paper we discuss numerous interesting investigations, which can be performed in the e + e center-of-mass energy region from the ϒ(5S) and up to 11.5GeV, where an efficient data taking operation should be possible with the planned B-factories. These studies include abundant Bs production and decay properties; independent confirmation and, if found, exhaustive exploration of Belle’s claimed charged bottomonia; clarification of puzzles of interquarkonium dipion transitions; extraction of the light-quark mass ratio from hadronic ϒ(5S) decays; analysis of quarkonium and exotic internal structure from open flavour decays, leading to severe SU(3) symmetry violations; clarification of whether a hybrid state has similar mass to the ϒ(5S) bottomonium, making it a double state; searches for molecular/tetraquark states that should be more stable with heavy quarks; completion of the table of positive-parity BJ mesons and study of their basic properties; production of \(\Lambda _b \bar \Lambda _b\) heavy baryon pairs, that, following weak decay, open vistas on the charmed baryon spectrum and new channels to study CP violation; confirmation or refutation of the deviation from pQCD of the pion transition form factor, by extending the Q2 reach of current analysis; and possibly reaching the threshold for the production of triply charmed baryons. If, in addition, the future colliders can be later upgraded to 12.5GeV, then the possibility of copious production of \(B_c \bar B_c\) pairs opens, entailing new studies of CP violation and improved, independent tests of the CKM picture (through determination of V bc , and of effective theories for heavy quarks.

Keywords

Heavy Quark Quark Model Radiative Decay Belle Collaboration BABAR Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 102, 012001 (2009) arXiv:0809.4120 [hep-ex].ADSGoogle Scholar
  2. 2.
    N. Brambilla, S. Eidelman, B.K. Heltsley, R. Vogt, G.T. Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011) arXiv:1010.5827 [hep-ph].ADSGoogle Scholar
  3. 3.
    Belle Collaboration (K.F. Chen et al.), Phys. Rev. D 82, 091106 (2010) arXiv:0810.3829 [hep-ex].ADSGoogle Scholar
  4. 4.
    C. Meng, K.-T. Chao, Phys. Rev. D 78, 034022 (2008) arXiv:0805.0143 [hep-ph].ADSGoogle Scholar
  5. 5.
    Belle Collaboration (K.F. Chen et al.), Phys. Rev. Lett. 100, 112001 (2008) arXiv:0710.2577 [hep-ex].ADSGoogle Scholar
  6. 6.
    Y.P. Kuang, T.M. Yan, Phys. Rev. D 24, 2874 (1981).ADSGoogle Scholar
  7. 7.
    CLEO Collaboration (D. Cronin-Hennessy et al.), Phys. Rev. D 76, 072001 (2007) arXiv:0706.2317 [hep-ex].ADSGoogle Scholar
  8. 8.
    BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 96, 232001 (2006) arXiv:hep-ex/0604031.ADSGoogle Scholar
  9. 9.
    Yu.A. Simonov, A.I. Veselov, Phys. Lett. B 671, 55 (2009) arXiv:0805.4499 [hep-ph].ADSGoogle Scholar
  10. 10.
    Yu.A. Simonov, A.I. Veselov, Phys. Rev. D 79, 034024 (2009) arXiv:0804.4635 [hep-ph].ADSGoogle Scholar
  11. 11.
    A. Ali, C. Hambrock, M.J. Aslam, Phys. Rev. Lett. 104, 162001 (2010) 107.ADSGoogle Scholar
  12. 12.
    A. Ali, C. Hambrock, S. Mishima, Phys. Rev. Lett. 106, 092002 (2011) arXiv:1011.4856 [hep-ph].ADSGoogle Scholar
  13. 13.
    D.-Y. Chen, J. He, X.-Q. Li, X. Liu, Phys. Rev. D 84, 074006 (2011) arXiv:1105.1672 [hep-ph].ADSGoogle Scholar
  14. 14.
    D.-Y. Chen, X. Liu, S.-L. Zhu, Phys. Rev. D 84, 074016 (2011) arXiv:1105.5193 [hep-ph].ADSGoogle Scholar
  15. 15.
    CLEO Collaboration (F. Butler et al.), Phys. Rev. D 49, 40 (1994).ADSGoogle Scholar
  16. 16.
    Belle Collaboration (A. Sokolov et al.), Phys. Rev. D 75, 071103 (2007) hep-ex/0611026, BELLE Collaboration (K. Abe), hep-ex/0512034.ADSGoogle Scholar
  17. 17.
    Belle Collaboration (I. Adachi), arXiv:1105.4583 [hep-ex].
  18. 18.
    Belle Collaboration (A. Bondar et al.), Phys. Rev. Lett. 108, 122001 (2012) arXiv:1110.2251 [hep-ex].ADSGoogle Scholar
  19. 19.
    M.B. Voloshin, Y.M. Zaitsev, Sov. Phys. Usp. 30, 553 (1987) Usp. Fiz. Nauk 152.ADSGoogle Scholar
  20. 20.
    Y.-P. Kuang, Front. Phys. China 1, 19 (2006) hep-ph/0601044.ADSGoogle Scholar
  21. 21.
    F.-K. Guo, P.-N. Shen, H.-C. Chiang, R.-G. Ping, Nucl. Phys. A 761, 269 (2005) hep-ph/0410204.ADSGoogle Scholar
  22. 22.
    M.B. Voloshin, Phys. Rev. D 74, 054022 (2006) hep-ph/0606258.ADSGoogle Scholar
  23. 23.
    M.B. Voloshin, JETP Lett. 37, 69 (1983) Pisma Zh. Eksp. Teor. Fiz. 37.ADSGoogle Scholar
  24. 24.
    V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, B.S. Zou, Phys. Rev. D 51, 4619 (1995).ADSGoogle Scholar
  25. 25.
    F.-K. Guo, P.-N. Shen, H.-C. Chiang, R.-G. Ping, Phys. Lett. B 658, 27 (2007) hep-ph/0601120.ADSGoogle Scholar
  26. 26.
    BES Collaboration (M. Ablikim et al.), Phys. Lett. B 598, 149 (2004) hep-ex/0406038.ADSGoogle Scholar
  27. 27.
    L.S. Brown, R.N. Cahn, Phys. Rev. Lett. 35, 1 (1975).ADSGoogle Scholar
  28. 28.
    T. Mannel, R. Urech, Z. Phys. C 73, 541 (1997) hep-ph/9510406.Google Scholar
  29. 29.
    H.J. Lipkin, S.F. Tuan, Phys. Lett. B 206, 349 (1988).ADSGoogle Scholar
  30. 30.
    P. Moxhay, Phys. Rev. D 39, 3497 (1989).MathSciNetADSGoogle Scholar
  31. 31.
    H.-Y. Zhou, Y.-P. Kuang, Phys. Rev. D 44, 756 (1991).ADSGoogle Scholar
  32. 32.
    F.-K. Guo, C. Hanhart, U.-G. Meißner, Phys. Rev. Lett. 103, 082003 (2009) 104.ADSGoogle Scholar
  33. 33.
    F.-K. Guo, C. Hanhart, G. Li, U.-G. Meißner, Q. Zhao, Phys. Rev. D 83, 2011 (034013) arXiv:1008.3632 [hep-ph].ADSGoogle Scholar
  34. 34.
    Belle Collaboration (I. Adachi et al.), Phys. Rev. Lett. 108, 032001 (2012) arXiv:1103.3419 [hep-ex].ADSGoogle Scholar
  35. 35.
    A.E. Bondar, A. Garmash, A.I. Milstein, R. Mizuk, M.B. Voloshin, Phys. Rev. D 84, 054010 (2011) arXiv:1105.4473 [hep-ph].ADSGoogle Scholar
  36. 36.
    Y. Yang, J. Ping, C. Deng, H.S. Zong, J. Phys. G 39, 105001 (2012) arXiv:1105.5935 [hep-ph].ADSGoogle Scholar
  37. 37.
    Z.F. Sun, J. He, X. Liu, Z.G. Luo, S.L. Zhu, Phys. Rev. D 84, 054002 (2011) arXiv:1106.2968 [hep-ph].ADSGoogle Scholar
  38. 38.
    J. Nieves, M.P. Valderrama, Phys. Rev. D 84, 056015 (2011) arXiv:1106.0600 [hep-ph].ADSGoogle Scholar
  39. 39.
    M. Cleven, F.-K. Guo, C. Hanhart, U.-G. Meißner, Eur. Phys. J. A 47, 120 (2011) arXiv:1107.0254 [hep-ph].ADSGoogle Scholar
  40. 40.
    D.V. Bugg, Europhys. Lett. 96, 11002 (2011) arXiv: 1105.5492 [hep-ph].ADSGoogle Scholar
  41. 41.
    S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, A. Hosaka, Phys. Rev. D 86, 014004 (2012) arXiv:1111.2921 [hep-ph].ADSGoogle Scholar
  42. 42.
    I.V. Danilkin, V.D. Orlovsky, Y.A. Simonov, Phys. Rev. D 85, 034012 (2012) arXiv:1106.1552 [hep-ph].ADSGoogle Scholar
  43. 43.
    A. Ali, C. Hambrock, W. Wang, Phys. Rev. D 85, 054011 (2012) arXiv:1110.1333 [hep-ph].ADSGoogle Scholar
  44. 44.
    M.T. Li, W.L. Wang, Y.B. Dong, Z.Y. Zhang arXiv:1204.3959 [hep-ph].
  45. 45.
    Yu.A. Simonov, A.I. Veselov, Phys. Rev. D 79, 034024 (2009).ADSGoogle Scholar
  46. 46.
    Belle Collaboration (I. Adachi), arXiv:1209.6450 [hep-ph].
  47. 47.
    M.B. Voloshin, Phys. Rev. D 84, 031502 (2011) arXiv: 1105.5829 [hep-ph].ADSGoogle Scholar
  48. 48.
    T. Mehen, J.W. Powell, Phys. Rev. D 84, 114013 (2011) arXiv:1109.3479 [hep-ph].ADSGoogle Scholar
  49. 49.
    M.B. Voloshin, Phys. Rev. D 86, 034013 (2012) arXiv:1204.1945 [hep-ph].ADSGoogle Scholar
  50. 50.
    BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 84, 072002 (2011) arXiv:1104.5254 [hep-ex].ADSGoogle Scholar
  51. 51.
    Belle Collaboration (R. Mizuk et al.), Phys. Rev. Lett. 109, 232002 (2012) arXiv:1205.6351 [hep-ex].ADSGoogle Scholar
  52. 52.
    F.-K. Guo, C. Hanhart, U.-G. Meißner, Phys. Rev. Lett. 105, 162001 (2010) arXiv:1007.4682 [hep-ph].ADSGoogle Scholar
  53. 53.
    J.F. Donoghue, D. Wyler, Phys. Rev. D 45, 892 (1992).ADSGoogle Scholar
  54. 54.
    J.F. Donoghue, B.R. Holstein, D. Wyler, Phys. Rev. Lett. 69, 3444 (1992).ADSGoogle Scholar
  55. 55.
    F.-K. Guo, C. Hanhart, G. Li, U.-G. Meißner, Q. Zhao, Phys. Rev. D 82, 034025 (2010) arXiv:1002.2712 [hep-ph].ADSGoogle Scholar
  56. 56.
    B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548, 153 (2002) nucl-th/0207006.ADSGoogle Scholar
  57. 57.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).ADSGoogle Scholar
  58. 58.
    A. Ali, C. Hambrock, I. Ahmed, M.J. Aslam, Phys. Lett. B 684, 28 (2010).ADSGoogle Scholar
  59. 59.
    D.S. Hwang, H. Son, Eur. Phys. J. C 67, 111 (2010) arXiv:0812.4402 [hep-ph].ADSGoogle Scholar
  60. 60.
    I.J. General, S.R. Cotanch, F.J. Llanes-Estrada, Eur. Phys. J. C 51, 347 (2007) hep-ph/0609115.ADSGoogle Scholar
  61. 61.
    J.M. Torres-Rincon, F.J. Llanes-Estrada, Phys. Rev. Lett. 105, 022003 (2010) arXiv:1003.5989 [hep-ph].ADSGoogle Scholar
  62. 62.
    Belle Collaboration (A. Drutskoy), PoS EPS-HEP2009, 056 (2009) arXiv:0909.5223 [hep-ex].Google Scholar
  63. 63.
    A. Drutskoy, arXiv:0905.2959 [hep-ex].
  64. 64.
    K.J. Juge, J. Kuti, C.J. Morningstar, Phys. Rev. Lett. 82, 4400 (1999).ADSGoogle Scholar
  65. 65.
  66. 66.
    Y. Liu, X.-Q. Luo, Phys. Rev. D 73, 054510 (2006).ADSGoogle Scholar
  67. 67.
    X.-Q.Luo, Y. Liu, Phys. Rev. D 74, 034502 (2006).ADSGoogle Scholar
  68. 68.
    T. Burch, C. Ehmann, Nucl. Phys. A 797, 33 (2007).ADSGoogle Scholar
  69. 69.
    J.J. Dudek, R.G. Edwards, N. Mathur, D.G. Richards, Phys. Rev. D 77, 034501 (2008).ADSGoogle Scholar
  70. 70.
    J.J. Dudek, E. Rrapaj, Phys. Rev. D 78, 094504 (2008).ADSGoogle Scholar
  71. 71.
    M. Chanowitz, S. Sharpe, Nucl. Phys. B 222, 211 (1983) 228.ADSGoogle Scholar
  72. 72.
    T. Barnes, F.E. Close, F. de Viron, Nucl. Phys. B 224, 241 (1983).ADSGoogle Scholar
  73. 73.
    T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52, 5242 (1995).ADSGoogle Scholar
  74. 74.
    S.R. Cotanch, F.J. Llanes-Estrada, Nucl. Phys. A 689, 481 (2001).ADSMATHGoogle Scholar
  75. 75.
    I.J. General, S.R. Cotanch, F.J. Llanes-Estrada, Eur. Phys. J. C 51, 347 (2007) hep-ph/0609115.ADSGoogle Scholar
  76. 76.
    F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001) hep-ph/0008337.ADSGoogle Scholar
  77. 77.
    E. Abreu, P. Bicudo, J. Phys. G 34, 195207 (2007).Google Scholar
  78. 78.
    D. Horn, J. Mandula, Phys. Rev. D 17, 898 (1978).ADSGoogle Scholar
  79. 79.
    A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, S. Ono, Z. Phys. C 28, 309 (1985).ADSGoogle Scholar
  80. 80.
    F. Iddir, S. Safir, O. Pene, Phys. Lett. B 433, 125 (1998).ADSGoogle Scholar
  81. 81.
    Yu.A. Simonov, Nucl. Phys. B Proc. Suppl. 23, 283 (1991).ADSGoogle Scholar
  82. 82.
    Yu.S. Kalashnikova, Yu.B. Yufryakov, Phys. Lett. B 359, 175 (1995).ADSGoogle Scholar
  83. 83.
    Yu.A. Simonov, Phys. At. Nucl. 68, 1294 (2005).Google Scholar
  84. 84.
    Yu.S. Kalashnikova, Z. Phys. C 62, 323 (1994).ADSGoogle Scholar
  85. 85.
    Yu.S. Kalashnikova, D.S. Kuzmenko, Phys. At. Nucl. 66, 955 (2003).Google Scholar
  86. 86.
    Yu.S. Kalashnikova, A.V. Nefediev, Phys. Rev. D 77, 054025 (2008) arXiv:0801.2036 [hep-ph].ADSGoogle Scholar
  87. 87.
    F. Buisseret, C. Semay, Phys. Rev. D 74, 114018 (2006).ADSGoogle Scholar
  88. 88.
    F. Buisseret, V. Mathieu, C. Semay, B. Silvestre-Brac, Eur. Phys. J. A 32, 123 (2007).ADSGoogle Scholar
  89. 89.
    E. Kou, O. Pene, Phys. Lett. B 631, 164 (2005).ADSGoogle Scholar
  90. 90.
    N. Isgur, R. Kokoski, J. Paton, Phys. Rev. Lett. 54, 869 (1985).ADSGoogle Scholar
  91. 91.
    F.E. Close, P.R. Page, Nucl. Phys. B 443, 233 (1995).ADSGoogle Scholar
  92. 92.
    S. Dubynskiy, M.B. Voloshin, Phys. Lett. B 666, 344 (2008) arXiv:0803.2224 [hep-ph].ADSGoogle Scholar
  93. 93.
    F.-K. Guo, C. Hanhart, U.-G. Meißner, Phys. Lett. B 665, 26 (2008) arXiv:0803.1392 [hep-ph].ADSGoogle Scholar
  94. 94.
    L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005).ADSGoogle Scholar
  95. 95.
    Belle Collaboration (K.F. Chen et al.), Phys. Rev. Lett. 100, 112001 (2008).ADSGoogle Scholar
  96. 96.
    CLEO Collaboration (M. Artuso et al.), Phys. Rev. Lett. 94, 032001 (2005) hep-ex/0411068.ADSGoogle Scholar
  97. 97.
    M.J. Galuska, undergraduate thesis submitted to the University of Giessen (2008) (in German).Google Scholar
  98. 98.
    A.M. Badalian, B.L.G. Bakker, I.V. Danilkin, Phys. Rev. D 79, 037505 (2009) arXiv:0812.2136 [hep-ph].ADSGoogle Scholar
  99. 99.
    A.M. Badalian, B.L.G. Bakker, I.V. Danilkin, Phys. At. Nucl. 73, 138 (2010) arXiv:0903.3643 [hep-ph].Google Scholar
  100. 100.
    B. -QLi, K.-T. Chao, Commun. Theor. Phys. 52, 653 (2009) arXiv:0909.1369 [hep-ph].ADSGoogle Scholar
  101. 101.
    S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985) S. Godfrey, R. Kokoski, 43.ADSGoogle Scholar
  102. 102.
    Y.S. Kalashnikova, A.V. Nefediev, Phys. Lett. B 530, 117 (2002) hep-ph/0112330.ADSGoogle Scholar
  103. 103.
    D. Ebert, V.O. Galkin, R.N. Faustov, Phys. Rev. D 57, 5663 (1998).ADSGoogle Scholar
  104. 104.
    W.A. Bardeen, E.J. Eichten, C.T. Hill, Phys. Rev. D 68, 054024 (2003).ADSGoogle Scholar
  105. 105.
    P. Colangelo, F. De Fazio, R. Ferrandes, Nucl. Phys. (Proc. Suppl.) 163, 177 (2007).ADSGoogle Scholar
  106. 106.
    A.F. Falk, T. Mehen, Phys. Rev. D 53, 231 (1996).ADSGoogle Scholar
  107. 107.
    R. Lewis, R.M. Woloshyn, Phys. Rev. D 62, 114507 (2000).ADSGoogle Scholar
  108. 108.
    L.M. Abreu, D. Cabrera, F.J. Llanes-Estrada, J.M. Torres-Rincon, Annals Phys. 326, 2737 (2011) arXiv: 1104.3815 [hep-ph].ADSMATHGoogle Scholar
  109. 109.
    E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 582, 39 (2004) hep-ph/0307133.ADSGoogle Scholar
  110. 110.
    J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 733, 142 (2004) hep-ph/0308263.ADSGoogle Scholar
  111. 111.
    F.-K. Guo, P.-N. Shen, H.-C. Chiang, R.-G. Ping, B.-S. Zou, Phys. Lett. B 641, 278 (2006) hep-ph/0603072.ADSGoogle Scholar
  112. 112.
    F.-K. Guo, P.-N. Shen, H.-C. Chiang, Phys. Lett. B 647, 133 (2007) hep-ph/0610008.ADSGoogle Scholar
  113. 113.
    Belle Collaboration (K. Abe et al.), Phys. Rev. Lett. 98, 082001 (2007) hep-ex/0507019.ADSGoogle Scholar
  114. 114.
    S.P. Baranov, V.L. Slad, Phys. At. Nucl. 67, 808 (2004) hep-ph/0603090.Google Scholar
  115. 115.
    J.D. Bjorken, Is the CCC a New Deal for Baryon Spectroscopy?, FERMILAB-CONF-85-069, C85-04-20 (1985). .Google Scholar
  116. 116.
    Y.Q. Chen, S.Z. Wu, JHEP 08, 144 (2011) 09.ADSGoogle Scholar
  117. 117.
    N. Brambilla, J. Ghiglieri, A. Vairo, Phys. Rev. D 81, 054031 (2010) arXiv:0911.3541 [hep-ph].ADSGoogle Scholar
  118. 118.
    J.M. Flynn, E. Hernandez, J. Nieves, Phys. Rev. D 85, 014012 (2012) arXiv:1110.2962 [hep-ph].ADSGoogle Scholar
  119. 119.
    F.J. Llanes-Estrada, O.I. Pavlova, R. Williams, Eur. Phys. J. C 72, 2019 (2012) arXiv:1111.7087 [hep-ph].ADSGoogle Scholar
  120. 120.
    G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979).ADSGoogle Scholar
  121. 121.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).ADSGoogle Scholar
  122. 122.
    J. Volmer et al., Phys. Rev. Lett. 86, 1713 (2001).ADSGoogle Scholar
  123. 123.
    T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006).ADSGoogle Scholar
  124. 124.
    V. Tadevosyan et al., Phys. Rev. C 75, 055205 (2007).ADSGoogle Scholar
  125. 125.
    M. Gorchtein, P. Guo, A.P. Szczepaniak, to be published in Phys. Rev. C arXiv:1102.5558 [nucl-th] and arXiv: 1106.5252 [hep-ph].
  126. 126.
    S. Noguera, V. Vento, Eur. Phys. J. A 48, 143 (2012) arXiv:1205.4598 [hep-ph].ADSGoogle Scholar
  127. 127.
    M. Diehl, T. Gousset, B. Pire, Phys. Rev. D 62, 073014 (2000) M. Diehl, Phys. Rev. Lett. 81.ADSGoogle Scholar
  128. 128.
    A. Ahmed, arXiv:1106.0740 [hep-ph].
  129. 129.
    A.K. Leibovich, I.W. Stewart, Phys. Rev. D 57, 5620 (1998) hep-ph/9711257.ADSGoogle Scholar
  130. 130.
    Yu.A. Simonov, Phys. Rev. D 85, 105025 (2012) arXiv: 1109.5545 [hep-ph].ADSGoogle Scholar
  131. 131.
    R. Fleischer, D. Wyler, Phys. Rev. D 62, 057503 (2000) hep-ph/0004010.ADSGoogle Scholar
  132. 132.
    B. Meadows, M. Blanke, A. Stocchi, A. Drutskoy, A. Cervelli, M. Giorgi, A. Lusiani, A. Perez, arXiv:1109.5028 [hep-ex].
  133. 133.
    J. Vijande, F. Fernandez, A. Valcarce, B. Silvestre-Brac, Eur. Phys. J. A 19, 383 (2004) hep-ph/0310007.ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. G. Drutskoy
    • 1
    • 2
  • F. -K. Guo
    • 3
  • F. J. Llanes-Estrada
    • 4
  • A. V. Nefediev
    • 1
    • 2
    • 5
    • 6
  • J. M. Torres-Rincon
    • 4
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Helmholtz-Inst. für Strahlen-und Kernphysik & Bethe Center for Theoretical PhysicsUniv. BonnBonnGermany
  4. 4.Depto. Fisica Teorica IUniversidad Complutense MadridMadridSpain
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  6. 6.All-Russia Research Institute of Automatics (VNIIA)MoscowRussia

Personalised recommendations