Dissipative hydrodynamics for multi-component systems

  • Andrej El
  • Ioannis Bouras
  • Christian Wesp
  • Zhe Xu
  • Carsten Greiner
Open Access
Letter
Part of the following topical collections:
  1. Topical Issue on Relativistic Hydro- and Thermodynamics

Abstract

Second-order dissipative hydrodynamic equations for each component of a multi-component system are derived using the entropy principle. Comparison of the solutions with kinetic transport results demonstrates validity of the obtained equations. We demonstrate how the shear viscosity of the total system can be calculated in terms of the involved cross-sections and partial densities. The presence of the inter-species interactions leads to a characteristic time dependence of the shear viscosity of the mixture, which also means that the shear viscosity of a mixture cannot be calculated using the Green-Kubo formalism the way it has been done recently. This finding is of interest for understanding of the shear viscosity of a quark-gluon plasma extracted from comparisons of hydrodynamic simulations with experimental results from RHIC and LHC.

Keywords

Shear Viscosity Entropy Production Collision Term Kinetic Transport Entropy Current 

References

  1. 1.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 182301 (2003) nucl-ex/0305013ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Voloshin, A.M. Poskanzer, R.Snellings, arXiv:0809.2949 [nucl-ex]
  3. 3.
    The ALICE Collaboration (K. Aamodt), arXiv:1011.3914 [nucl-ex]
  4. 4.
    W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J.M. Stewart, Proc. R. Soc. London, Ser. A 357, 59 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    W. Israel, M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Muronga, Phys. Rev. C 69, 034903 (2004) arXiv:0309055 [nucl-th]ADSCrossRefGoogle Scholar
  8. 8.
    P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010) arXiv:0902.3663 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    G.S. Denicol, T. Koide, D.H. Rischke, Phys. Rev. Lett. 105, 162501 (2010) arXiv:1004.5013 [nucl-th]ADSCrossRefGoogle Scholar
  10. 10.
    A. Monnai, T. Hirano, Nucl. Phys. A 847, 283 (2010) arXiv:1003.3087 [nucl-th]ADSCrossRefGoogle Scholar
  11. 11.
    H. Song, U.W. Heinz, Phys. Rev. C 77, 064901 (2008) arXiv:0712.3715 [nucl-th]ADSCrossRefGoogle Scholar
  12. 12.
    M. Luzum, P.Romatschke, Phys. Rev. C 78, 034915 (2008) 79ADSCrossRefGoogle Scholar
  13. 13.
    D.A. Teaney, arXiv:0905.2433 [nucl-th]
  14. 14.
    H. Song, S.A. Bass, U.W. Heinz arXiv:1103.2380 [nucl-th]
  15. 15.
    H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H. Rischke, arXiv:1203.2452 [nucl-th]
  16. 16.
    Z. Xu, C. Greiner, H. Stöcker, Phys. Rev. Lett. 101, 082302 (2008) arXiv:0711.0961 [nucl-th]ADSCrossRefGoogle Scholar
  17. 17.
    C. Wesp, A. El, F. Reining, Z. Xu, I. Bouras, C. Greiner, Phys. Rev. C 84, 054911 (2011) arXiv:1106.4306 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    N. Demir, S.A. Bass, Phys. Rev. Lett. 102, 172302 (2009) arXiv:0812.2422 [nucl-th]ADSCrossRefGoogle Scholar
  19. 19.
    J.I. Fuini, N.S. Demir, D.K. Srivastava, S.A. Bass, J. Phys. G 38, 015004 (2011) arXiv:1008.2306 [nucl-th]ADSCrossRefGoogle Scholar
  20. 20.
    F. Reining, I. Bouras, A. El, C. Wesp, Z. Xu, C. Greiner, Phys. Rev. E 85, 026302 (2012) arXiv:1106.4210 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    A. El, A. Muronga, Z. Xu, C. Greiner, Phys. Rev. C 79, 044914 (2009) arXiv:0812.2762 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    M. Kranyš, Arch. Ration. Mech. Anal. 39, 245 (1970)ADSCrossRefGoogle Scholar
  23. 23.
    A. El, Z. Xu, C. Greiner, Phys. Rev. C 81, 041901 (2010) arXiv:0907.4500 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005) arXiv:0406278 [hep-ph]ADSCrossRefGoogle Scholar
  25. 25.
    Z. Xu, C. Greiner, Phys. Rev. C 76, 024911 (2007) arXiv:hep-ph/0703233 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Andrej El
    • 1
  • Ioannis Bouras
    • 1
  • Christian Wesp
    • 1
  • Zhe Xu
    • 2
  • Carsten Greiner
    • 1
  1. 1.Institut für Theoretische PhysikGoethe UniversitätFrankfurt am MainGermany
  2. 2.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations