Extraction of the sound velocity from rapidity spectra: Evidence for QGP formation at FAIR/RHIC-BES energies

Regular Article - Theoretical Physics

Abstract

We analyze longitudinal pion spectra from \(\ensuremath \sqrt{s_{NN}}=2\) GeV to \(\ensuremath \sqrt{s_{NN}}=20\) GeV within Landau’s hydrodynamical model and the UrQMD hybrid approach. From the measured data on the widths of the pion rapidity spectra, we extract the sound velocity c s 2 in the dense stage of the reactions. It is found that the sound velocity has a local minimum (indicating the softest point in the equation of state, EoS) at \(\ensuremath \sqrt{s_{NN}}=4\mbox{--}9\) GeV, an energy range accessible at the Facility for Antiproton and Ion Research (FAIR) as well as the RHIC-Beam Energy Scan (RHIC-BES). This softening of the EoS is compatible with the formation of a QGP at the onset of deconfinement. The extracted sound velocities are then used to calculate an excitation function for the mean transverse mass of pions from the hybrid model. We find that, above \(\ensuremath \sqrt{s_{NN}} \approx 10\) GeV, even the lowest c s 2 gives a considerably larger \(\ensuremath \langle m_T\rangle\) of pions compared to data.

Keywords

Hybrid Model Sound Velocity Excitation Function Rapidity Distribution Quark Gluon Plasma 

References

  1. 1.
    M. Bleicher, arXiv:1107.3482 [nucl-th]
  2. 2.
    The NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    NA49 Collaboration (M. Gazdzicki et al.), J. Phys. G 30, S701 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    for the STAR Collaboration (L. Kumar), arXiv:1106.6071 [nucl-ex]
  5. 5.
    C. Blume, J. Phys. G: Nucl. Part. Phys. 31, S57 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Bedanga Mohanty (STAR), talk at the Quark Matter 2011 ConferenceGoogle Scholar
  7. 7.
    for the STAR Collaboration (C. Anson) arXiv:1107.1527 [nucl-ex]
  8. 8.
    for the STAR Collaboration (X. Luo), arXiv:1106.2926 [nucl-ex]
  9. 9.
    P. Koch, B. Muller, J. Rafelski, Phys. Rep. 142, 167 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    M. Bleicher, S. Jeon, V. Koch, Phys. Rev. C 62, 061902 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    E.V. Shuryak, M.A. Stephanov, Phys. Rev. C 63, 064903 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    H. Heiselberg, A.D. Jackson, Phys. Rev. C 63, 064904 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    B. Muller, Nucl. Phys. A 702, 281 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M. Gazdzicki, M.I. Gorenstein, S. Mrowczynski, Phys. Lett. B 585, 115 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M.I. Gorenstein, M. Gazdzicki, O.S. Zozulya, Phys. Lett. B 585, 237 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Gazdzicki, M. I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999)ADSGoogle Scholar
  17. 17.
    M.I. Gorenstein, M. Gazdzicki, K.A. Bugaev, Phys. Lett. B 567, 175 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Hama, F. Grassi, O. Socolowski, T. Kodama, M. Gazdzicki, M. Gorenstein, Acta Phys. Polon. B 35, 179 (2004)ADSGoogle Scholar
  19. 19.
    H. Weber, C. Ernst, M. Bleicher et al., Phys. Lett. B 442, 443 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    E.L. Bratkovskaya et al., Phys. Rev. Lett. 92, 032302 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    L.V. Bravina et al., Phys. Rev. C 60, 024904 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    L.V. Bravina et al., Nucl. Phys. A 698, 383 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 606, 320 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 638, 3 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    L.D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)Google Scholar
  29. 29.
    S.Z. Belenkij, L.D. Landau, Usp. Fiz. Nauk 56, 309 (1955)CrossRefMATHGoogle Scholar
  30. 30.
    E.V. Shuryak, Yad. Fiz. 16, 395 (1972)Google Scholar
  31. 31.
    P. Carruthers, Ann. N.Y. Acad. Sci. 229, 91 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    P. Carruthers, M. Doung-van, Phys. Rev. D 8, 859 (1973)ADSCrossRefGoogle Scholar
  33. 33.
    P.A. Carruthers, in 5th High-Energy Heavy-Ion Study, Proceedings (Berkeley, California, 1981) pp 499--539 and Los Alamos Sci. Lab. LA-UR-81-2221 (81, REC.AUG.) pp. 44Google Scholar
  34. 34.
    E.L. Feinberg, Z. Phys. C 38, 229 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    J. Stachel, P. Braun-Munzinger, Phys. Lett. B 216, 1 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    P. Steinberg, Acta Phys. Hung. A 24, 51 (2005)CrossRefGoogle Scholar
  37. 37.
    BRAHMS Collaboration (M.J. Murray), J. Phys. G 30, S667 (2004)CrossRefGoogle Scholar
  38. 38.
    PHOBOS Collaboration (G.I. Veres et al.), J. Phys. G G 30, S1143 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    P.K. Netrakanti, B. Mohanty, Phys. Rev. C 71, 047901 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    L.M. Satarov, I.N. Mishustin, A.V. Merdeev, H. Stoecker, Phys. At. Nucl. 70, 1773 (2007)CrossRefGoogle Scholar
  41. 41.
    H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stocker, Phys. Rev. C 78, 044901 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stoecker, W. Greiner, Phys. Rev. C 60, 021902 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    A. Dumitru, S.A. Bass, M. Bleicher, H. Stoecker, W. Greiner, Phys. Lett. B 460, 411 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    J. Steinheimer, M. Bleicher, H. Petersen, S. Schramm, H. Stocker, D. Zschiesche, Phys. Rev. C 77, 034901 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J. Steinheimer, V. Dexheimer, H. Petersen, M. Bleicher, S. Schramm, H. Stoecker, Phys. Rev. C 81, 044913 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    H. Petersen, G.Y. Qin, S.A. Bass, B. Muller, Phys. Rev. C 82, 041901 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    H. Petersen, arXiv:1105.1766 [nucl-th]
  48. 48.
    H. Petersen, C. Coleman-Smith, S.A. Bass, R. Wolpert, J. Phys. G G38, 045102 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    E895 Collaboration (J. Klay et al.), Phys. Rev. C 68, 054905 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stoecker, W. Greiner, Heavy Ion Phys. 1, 309 (1995)Google Scholar
  52. 52.
    J. Brachmann, A. Dumitru, H. Stoecker, W. Greiner, Eur. Phys. J. A 8, 549 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    T. Csorgo, L.P. Csernai, Phys. Lett. B 333, 494 (1994)ADSCrossRefGoogle Scholar
  55. 55.
    J. Letessier, J. Rafelski, A. Tounsi, Phys. Lett. B 321, 394 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    R. Hagedorn, Nuovo Cimento 3, 147 (1965)Google Scholar
  57. 57.
    J. Rafelski, R. Hagedorn, Bielefeld Symposium, edited by H. Satz, (1980) pp. 253Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
  3. 3.Institut für Theoretische PhysikGoethe Universität FrankfurtFrankfurt MainGermany

Personalised recommendations