Skip to main content
Log in

Nickel isotopes in stellar matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Isotopes of nickel play a key role during the silicon burning phase up to the presupernova phase of massive stars. Electron capture rates on these nickel isotopes are also important during the phase of core contraction. I present here the microscopic calculation of ground- and excited-states Gamow-Teller (GT) strength distributions for key nickel isotopes. The calculation is performed within the frame-work of the pn-QRPA model. A judicious choice of model parameters, specially of the Gamow-Teller strength parameters and the deformation parameter, resulted in a much improved calculation of GT strength functions. The excited-state GT distributions are much different from the corresponding ground-state distributions resulting in a failure of the Brink's hypothesis. The electron capture and positron decay rates on nickel isotopes are also calculated within the framework of pn-QRPA model relevant to the presupernova evolution of massive stars. The electron capture rates on odd-A isotopes of nickel are shown to have dominant contributions from parent excited states during as early as silicon burning phases. Comparison is being made with the large-scale shell model calculation. During the silicon burning phases of massive stars the electron capture rates on 57, 59Ni are around an order of magnitude bigger than shell model rates and can bear consequences for core-collapse simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963).

    Article  ADS  Google Scholar 

  2. C. Gaarde et al., Nucl. Phys. A 334, 334 (1980).

    Article  Google Scholar 

  3. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).

    Article  ADS  Google Scholar 

  4. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1992).

    Article  ADS  Google Scholar 

  5. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980).

    Article  ADS  Google Scholar 

  6. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982).

    Article  ADS  Google Scholar 

  7. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982).

    Article  ADS  Google Scholar 

  8. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 293, 1 (1985).

    Article  ADS  Google Scholar 

  9. M.B. Aufderheide, S.D. Bloom, D.A. Ressler, G.J. Mathews, Phys. Rev. C 47, 2961 (1993).

    Article  ADS  Google Scholar 

  10. M.B. Aufderheide, S.D. Bloom, D.A. Ressler, G.J. Mathews, Phys. Rev. C 48, 1677 (1993).

    Article  ADS  Google Scholar 

  11. J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149 (1999).

    Article  ADS  Google Scholar 

  12. K. Langanke, G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Article  ADS  Google Scholar 

  13. M.B. Aufderheide, I. Fushiki, S.E. Woosley, E. Stanford, D.H. Hartmann, Astrophys. J. Suppl. Ser. 91, 389 (1994).

    Article  ADS  Google Scholar 

  14. A. Heger, S.E. Woosley, G. Martínez-Pinedo, K. Langanke, Astrophys. J. 560, 307 (2001).

    Article  ADS  Google Scholar 

  15. J.-U. Nabi, M.-U. Rahman, Phys. Lett. B 612, 190 (2005).

    Article  ADS  Google Scholar 

  16. J.A. Halbleib, R.A. Sorensen, Nucl. Phys. A 98, 542 (1967).

    Article  ADS  Google Scholar 

  17. J. Krumlinde, P. Möller, Nucl. Phys. A 417, 419 (1984).

    Article  ADS  Google Scholar 

  18. K. Muto, E. Bender, T. Oda, H.V. Klapdor, Z. Phys. A 341, 407 (1992).

    Article  ADS  Google Scholar 

  19. A. Staudt, E. Bender, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79 (1990).

    Article  ADS  Google Scholar 

  20. M. Hirsch, A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53, 165 (1993).

    Article  ADS  Google Scholar 

  21. J. Rapaport et al., Nucl. Phys. A 410, 371 (1983).

    Article  ADS  Google Scholar 

  22. A.L. Williams et al., Phys. Rev. C 51, 1144 (1995).

    Article  ADS  Google Scholar 

  23. M. Hagemann et al., Phys. Lett. B 579, 251 (2004).

    Article  ADS  Google Scholar 

  24. A.L. Cole et al., Phys. Rev. C 74, 034333 (2006).

    Article  ADS  Google Scholar 

  25. M. Sasano et al., Phys. Rev. C 79, 024602 (2009).

    Article  ADS  Google Scholar 

  26. N. Anantaraman et al., Phys. Rev. C 78, 065803 (2008).

    Article  ADS  Google Scholar 

  27. L. Popescu et al., Phys. Rev. C 75, 054312 (2007).

    Article  ADS  Google Scholar 

  28. L. Popescu et al., Phys. Rev. C 79, 064312 (2009).

    Article  ADS  Google Scholar 

  29. I. Stetcu, C.W. Johnson, Phys. Rev. C 69, 024311 (2004).

    Article  ADS  Google Scholar 

  30. S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, jr., P.H. Stelson, At. Data Nucl. Data Tables 36, 1 (1987).

    Article  ADS  Google Scholar 

  31. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).

    Article  ADS  Google Scholar 

  32. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  33. J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237 (2004).

    Article  ADS  Google Scholar 

  34. J. Pruet, G.M. Fuller, Astrophys. J. Suppl. Ser. 149, 189 (2003).

    Article  ADS  Google Scholar 

  35. J.-U. Nabi, Eur. Phys. J. A 40, 223 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel-Un Nabi.

Additional information

Communicated by B. Ananthanarayan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabi, JU. Nickel isotopes in stellar matter. Eur. Phys. J. A 48, 84 (2012). https://doi.org/10.1140/epja/i2012-12084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12084-7

Keywords

Navigation