Nickel isotopes in stellar matter

Regular Article - Theoretical Physics

Abstract

Isotopes of nickel play a key role during the silicon burning phase up to the presupernova phase of massive stars. Electron capture rates on these nickel isotopes are also important during the phase of core contraction. I present here the microscopic calculation of ground- and excited-states Gamow-Teller (GT) strength distributions for key nickel isotopes. The calculation is performed within the frame-work of the pn-QRPA model. A judicious choice of model parameters, specially of the Gamow-Teller strength parameters and the deformation parameter, resulted in a much improved calculation of GT strength functions. The excited-state GT distributions are much different from the corresponding ground-state distributions resulting in a failure of the Brink's hypothesis. The electron capture and positron decay rates on nickel isotopes are also calculated within the framework of pn-QRPA model relevant to the presupernova evolution of massive stars. The electron capture rates on odd-A isotopes of nickel are shown to have dominant contributions from parent excited states during as early as silicon burning phases. Comparison is being made with the large-scale shell model calculation. During the silicon burning phases of massive stars the electron capture rates on 57, 59Ni are around an order of magnitude bigger than shell model rates and can bear consequences for core-collapse simulators.

Keywords

Massive Star Electron Capture Rate Stellar Temperature Nickel Isotope Total Capture Rate 

References

  1. 1.
    K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    C. Gaarde et al., Nucl. Phys. A 334, 334 (1980).CrossRefGoogle Scholar
  3. 3.
    F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Bethe, Rev. Mod. Phys. 62, 801 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 293, 1 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    M.B. Aufderheide, S.D. Bloom, D.A. Ressler, G.J. Mathews, Phys. Rev. C 47, 2961 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    M.B. Aufderheide, S.D. Bloom, D.A. Ressler, G.J. Mathews, Phys. Rev. C 48, 1677 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    K. Langanke, G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Aufderheide, I. Fushiki, S.E. Woosley, E. Stanford, D.H. Hartmann, Astrophys. J. Suppl. Ser. 91, 389 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    A. Heger, S.E. Woosley, G. Martínez-Pinedo, K. Langanke, Astrophys. J. 560, 307 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    J.-U. Nabi, M.-U. Rahman, Phys. Lett. B 612, 190 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Halbleib, R.A. Sorensen, Nucl. Phys. A 98, 542 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    J. Krumlinde, P. Möller, Nucl. Phys. A 417, 419 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    K. Muto, E. Bender, T. Oda, H.V. Klapdor, Z. Phys. A 341, 407 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    A. Staudt, E. Bender, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    M. Hirsch, A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53, 165 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    J. Rapaport et al., Nucl. Phys. A 410, 371 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Williams et al., Phys. Rev. C 51, 1144 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    M. Hagemann et al., Phys. Lett. B 579, 251 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    A.L. Cole et al., Phys. Rev. C 74, 034333 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    M. Sasano et al., Phys. Rev. C 79, 024602 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    N. Anantaraman et al., Phys. Rev. C 78, 065803 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    L. Popescu et al., Phys. Rev. C 75, 054312 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    L. Popescu et al., Phys. Rev. C 79, 064312 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    I. Stetcu, C.W. Johnson, Phys. Rev. C 69, 024311 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, jr., P.H. Stelson, At. Data Nucl. Data Tables 36, 1 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    P. Möller, J.R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    J. Pruet, G.M. Fuller, Astrophys. J. Suppl. Ser. 149, 189 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    J.-U. Nabi, Eur. Phys. J. A 40, 223 (2009).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Engineering SciencesGIK Institute of Engineering Sciences and TechnologySwabi, Khyber PakhtunkhwaPakistan
  2. 2.The Abdus Salam ICTPTriesteItaly

Personalised recommendations