Advertisement

Band structures and shape coexistence in 187Pt

  • D. Hojman
  • M. A. Cardona
  • B. Roussière
  • J. Sauvage
  • M. A. Riley
  • S. L. Tabor
  • C. R. Hoffman
  • A. Aguilar
  • W. T. Cluff
  • T. Hinners
  • K. Lagergren
  • S. Lee
  • M. Perry
  • A. Pipidis
  • V. Tripathi
Regular Article - Experimental Physics

Abstract

High-spin states in 187Pt have been studied by means of γ-ray spectroscopy techniques. Known bands have been significantly extended and new bands have been found. The band structures are discussed in the framework of the cranking model and negative-parity states are compared with calculations performed with a semi-microscopic axial-rotor plus one-quasiparticle coupling model. Shape coexistence is observed from low excitation energy.

Keywords

Level Scheme Nuclear Shape Band Head Coincidence Spectrum Prolate Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Kutsarova et al., Eur. Phys. J. A 23, 69 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A.E. Stuchbery et al., Phys. Rev. Lett. 76, 2246 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    G. Ulm et al., Z. Phys. A 325, 247 (1986).ADSGoogle Scholar
  4. 4.
    Th. Hilberath et al., Z. Phys. A 342, 1 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    F. Le Blanc et al., Phys. Rev. C 60, 054310 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    B. Roussière et al., Nucl. Phys. A 548, 227 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    J. Sauvage et al., Hyperfine Interact. 129, 303 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    J. Sauvage et al., Phys. At. Nucl. 64, 1134 (2001).CrossRefGoogle Scholar
  9. 9.
    M.A. Cardona et al., AIP Conf. Proc. 884, 448 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    X.H. Zhou et al., Phys. Rev. C 75, 034314 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    V.P. Janzen, private communication (1991).Google Scholar
  12. 12.
    B. Roussière, Thèse, Orsay (1986).Google Scholar
  13. 13.
    M.C. Abreu, Rapport Annuel IPN-DRE (1987) p. 17.Google Scholar
  14. 14.
    A. Ben Braham et al., Nucl. Phys. A 332, 397 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    B.E. Gnade et al., Nucl. Phys. A 406, 29 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    M. Piiparinen et al., Phys. Rev. Lett. 34, 1110 (1975) and references therein.ADSCrossRefGoogle Scholar
  17. 17.
    M.-A. Deleplanque et al., C. R. Acad. Sci. Paris B 280, 515 (1975).Google Scholar
  18. 18.
    M. Piiparinen et al., Phys. Rev. C 13, 2208 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Basunia, Nucl. Data Sheets 110, 999 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    M. Meyer et al., Nucl. Phys. A 316, 93 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    J. Libert et al., Phys. Lett. B 95, 175 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    J. Libert et al., Phys. Rev. C 25, 586 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    K.S. Krane et al., Nucl. Data Tables 11, 351 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    P.M. Jones et al., Nucl. Instrum. Methods Phys. Res. A 362, 556 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    S.G. Rohoziński et al., Acta Phys. Pol. B 27, 499 (1996).Google Scholar
  26. 26.
    Ch. Droste et al., Nucl. Instrum. Methods Phys. Res. A 378, 518 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    K. Starosta et al., Nucl. Instrum. Methods Phys. Res. A 423, 16 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    G. Hebbinghaus et al., Nucl. Phys. A 514, 225 (1990) and references therein.ADSCrossRefGoogle Scholar
  29. 29.
    B. Singh, Nucl. Data Sheets 95, 387 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Larabee et al., Phys. Lett. B 169, 21 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    L. Richter et al., Nucl. Phys. A 319, 221 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    G. Hebbinghaus et al., Z. Phys. A 328, 387 (1987).ADSGoogle Scholar
  33. 33.
    T. Shizuma et al., Nucl. Phys. A 696, 337 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    T. Shizuma et al., Phys. Rev. C 69, 024305 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    W. Hua et al., Phys. Rev. C 80, 034303 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    H. Toki et al., Nucl. Phys. A 279, 1 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    H.T. Duong et al., Phys. Lett. B 217, 401 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    D. Vautherin et al., Phys. Rev. C 5, 626 (1972).ADSCrossRefGoogle Scholar
  39. 39.
    D. Vautherin, Phys. Rev. C 7, 296 (1973).ADSCrossRefGoogle Scholar
  40. 40.
    H. Flocard et al., Nucl. Phys. A 203, 433 (1973).ADSCrossRefGoogle Scholar
  41. 41.
    M. Beiner et al., Nucl. Phys. A 238, 29 (1975).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Hojman
    • 1
    • 2
  • M. A. Cardona
    • 1
    • 2
    • 3
  • B. Roussière
    • 4
  • J. Sauvage
    • 4
  • M. A. Riley
    • 5
  • S. L. Tabor
    • 5
  • C. R. Hoffman
    • 5
  • A. Aguilar
    • 5
  • W. T. Cluff
    • 5
  • T. Hinners
    • 5
  • K. Lagergren
    • 5
  • S. Lee
    • 5
  • M. Perry
    • 5
  • A. Pipidis
    • 5
  • V. Tripathi
    • 5
  1. 1.Departamento de FísicaComisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.Universidad Nacional de San MartínBuenos AiresArgentina
  4. 4.Institut de Physique NucléaireIN2P3/CNRS/Université Paris-SudOrsayFrance
  5. 5.Department of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations