Advertisement

M1 strength functions from large-scale shell-model calculations and their effect on astrophysical neutron capture cross-sections

  • H. P. Loens
  • K. Langanke
  • G. Martínez-Pinedo
  • K. Sieja
Regular Article - Theoretical Physics

Abstract.

We have computed magnetic dipole strength distributions for iron isotopes within shell-model calculations based on model spaces with 40Ca and 48Ca cores, respectively. These distributions have been incorporated into statistical model calculations of neutron capture cross-sections. We find significant differences if the cross-sections are compared to those obtained with empirical parametrizations of the M1 strength distributions, the latter being commonly used in applications of the statistical model to astrophysically important capture reactions. As this is traditionally done, these studies are based on the hypothesis that the strength functions for all excited states are the same as for the ground state. Using neutron capture on 68Fe as an example we investigate the validity of this hypothesis and calculate the capture cross-section on the basis of individual strength distributions calculated within the shell model for the lowest 30 states in the compound nucleus 69Fe. Finally we explore which effect the scissors mode, a fundamental orbital M1 excitation observed in deformed nuclei at rather low excitation energies, might have on capture cross-sections for nuclei with low neutron thresholds, a situation which typically occurs for r-process nuclei. The appendix compares the spin- and parity-dependent level densities for 69Fe with those obtained with other models.

Keywords

Shell Model Level Density Neutron Capture Strength Function Neutron Separation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).ADSCrossRefGoogle Scholar
  2. 2.
    G. Wallerstein et al., Rev. Mod. Phys. 69, 795 (1997).CrossRefGoogle Scholar
  3. 3.
    K. Langanke, M. Wiescher, Rep. Prog. Phys. 64, 1657 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).ADSCrossRefMATHGoogle Scholar
  5. 5.
    J.A. Holmes, S.E. Woosley, W.A. Fowler, B.A. Zimmerman, At. Data Nucl. Data Tables 18, 305 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Cowan, F.-K. Thielemann, J.W. Truran, Phys. Rep. 208, 267 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    T. Rauscher, F.-K. Thielemann, K.-L. Kratz, Phys. Rev. C 56, 1613 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    F. Käppeler, Prog. Part. Nucl. Phys. 43, 419 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    S. Goriely, E. Khan, M. Samyn, Nucl. Phys. A 739, 331 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    S. Goriely, Phys. Lett. B 436, 10 (1998).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Phys. Rev. C 79, 054312 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    C. Barbieri, E. Caurier, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C 77, 024304 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    E. Litvinova et al., Nucl. Phys. A 823, 26 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, Nucl. Phys. A 653, 439 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 799, 42 (2005).Google Scholar
  18. 18.
    P. von Neumann-Cosel, A. Poves, J. Retamosa, A. Richter, Phys. Lett. B 443, 1 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    K. Langanke, G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 93, 202501 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    D. Bohle et al., Phys. Lett. B 137, 27 (1964).ADSCrossRefGoogle Scholar
  22. 22.
    K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 79, 79 (2000).Google Scholar
  24. 24.
    H.P. Loens et al., Phys. Lett. B 666, 395 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    S. Hilaire, S. Goriely, Nucl. Phys. A 779, 63 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    S. Goriely, S. Hilaire, A. Koning, Phys. Rev. C 78, 064307 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    D. Mocelj et al., Phys. Rev. C 75, 045805 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Springer-Verlag, 1952).Google Scholar
  30. 30.
    J. Kopecky, M. Uhl, Report NEA/NSC/DOC(95) 1, 119.Google Scholar
  31. 31.
    E.-W. Grewe et al., Phys. Rev. C 77, 064303 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    A. Poves, J. Sánchez-Solano, E. Caurier, F. Nowacki, Nucl. Phys. A 694, 157 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    K. Langanke, J. Terasaki, F. Nowacki, D.J. Dean, W. Nazarewicz, Phys. Rev. C 67, 044314 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Daugas et al., Phys. Rev. C 81, 034304 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    Q. Zhi et al., Nucl. Phys. A 859, 172 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960).Google Scholar
  38. 38.
    P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    K. Langanke et al., Phys. Rev. C 52, 718 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    G. Martinez-Pinedo et al., Phys. Rev. C 53, R2602 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    T. Rauscher, Phys. Rev. C 81, 045807 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    I. Dillmann, Proceedings of International Conference on Nuclear Data for Science and Technology, Vol. 1 (2008) p. 575, I. Dillmann, Ph.D. thesis, University of Basel (2006).Google Scholar
  43. 43.
    R.W. Fearick et al., Nucl. Phys. A 727, 41 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Yad. Phys. 21, 485 (1975).Google Scholar
  46. 46.
    A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979).Google Scholar
  47. 47.
    A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    Y. Alhassid, G.F. Bertsch, S. Liu, H. Nakada, Phys. Rev. Lett. 84, 4313 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    C.W. Johnson, S.E. Koonin, G.H. Lang, W.E. Ormand, Phys. Rev. Lett. 69, 3157 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997).ADSCrossRefGoogle Scholar
  51. 51.
    W.E. Ormand, Phys. Rev. C 56, R1678 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    H. Nakada, Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997).ADSCrossRefGoogle Scholar
  53. 53.
    K. Langanke, Phys. Lett. B 438, 235 (1998).ADSCrossRefGoogle Scholar
  54. 54.
    Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 83, 4265 (1999).ADSCrossRefGoogle Scholar
  55. 55.
    K. Langanke, Nucl. Phys. A 778, 233 (2006).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. P. Loens
    • 1
    • 2
  • K. Langanke
    • 1
    • 2
    • 3
  • G. Martínez-Pinedo
    • 1
  • K. Sieja
    • 4
  1. 1.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  2. 2.Technische Universität DarmstadtInstitut für KernphysikDarmstadtGermany
  3. 3.Frankfurt Institute of Advanced StudiesFrankfurtGermany
  4. 4.IPHCIN2P3-CNRS et Université de StrasbourgStrasbourgFrance

Personalised recommendations