Advertisement

D-mesons and charmonium states in hot isospin asymmetric strange hadronic matter

  • Arvind Kumar
  • Amruta Mishra
Regular Article - Theoretical Physics

Abstract

We study the properties of D and \( \bar{{D}}\) mesons in hot isospin asymmetric strange hadronic matter, arising due to their interactions with the hadrons in the hyperonic medium. The interactions of D and \( \bar{{D}}\) mesons with these light hadrons are derived by generalizing the chiral SU(3) model used for the study of hyperonic matter to SU(4). The nucleons, hyperons, the scalar isoscalar meson, σ and the scalar-isovector meson, \( \delta\) as modified in the strange hadronic matter, modify the masses of D and \( \bar{{D}}\) mesons. It is found that, as compared to the \( \bar{{D}}\) mesons (\( \bar{{D^0}}\), D ), the properties of the D mesons (D 0, D +) are more sensitive to the isospin asymmetry at high densities. On the other hand, the effects of strangeness fraction are found to be more dominant for the \( \bar{{D}}\) mesons as compared to the D mesons and these modifications are observed to be particularly appreciable at high densities. We also study the mass modifications of the charmonium states J/ψ, ψ(3686) and ψ(3770) in the isospin asymmetric strange hadronic matter at finite temperatures and investigate the possibility of the decay of the charmonium states into D \( \bar{{D}}\) pairs in the hot hadronic medium. The mass modifications of these charmonium states arise due to their interaction with the gluon condensates of QCD, simulated by a scalar dilaton field introduced to incorporate the broken scale invariance of QCD within the effective chiral model. The effects of finite quark masses are taken into account in the trace of the energy momentum tensor in QCD, while investigating the medium modification of the charmonium masses through the modification of the gluon condensate in the medium. We also compute the partial decay widths of the charmonium states to the D \( \bar{{D}}\) pairs in the hadronic medium. The strong dependence on density of the in-medium properties of the D, \( \bar{{D}}\) and the charmonium states, as well as the partial decay widths of charmonium states to D \( \bar{{D}}\) pairs, found in the present investigation, will be of direct relevance in observables like open charm enhancement as well as J/ψ suppression in the compressed baryonic matter (CBM) experiments at the future Facility for Antiproton and Ion Research, GSI, where the baryonic matter at high densities is planned to be produced.

Keywords

Decay Width Mass Shift Energy Momentum Tensor Baryon Density Gluon Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    CERES Collaboration (G. Agakichiev et al.), Phys. Rev. Lett. 75, 1272 (1995)ADSGoogle Scholar
  2. 2.
    CERES Collaboration (G. Agakichiev et al.), Phys. Lett. B 422, 405 (1998).ADSGoogle Scholar
  3. 3.
    CERES Collaboration (G. Agakichiev et al.), Nucl. Phys. A 661, 23 (1999).ADSGoogle Scholar
  4. 4.
    HELIOS-3 Collaboration (N. Masera et al.), Nucl. Phys. A 590, 93c (1995).ADSGoogle Scholar
  5. 5.
    DLS Collaboration (R.J. Porter et al.), Phys. Rev. Lett. 79, 1229 (1997).ADSGoogle Scholar
  6. 6.
    DLS Collaboration (W.K. Wilson et al.), Phys. Rev. C 57, 1865 (1998).ADSGoogle Scholar
  7. 7.
    E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 619, 413 (1997).ADSGoogle Scholar
  8. 8.
    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999).ADSGoogle Scholar
  9. 9.
    A. Mishra, J.C. Parikh, W. Greiner, J. Phys. G 28, 151 (2002).ADSGoogle Scholar
  10. 10.
    A. Mishra, J. Reinhardt, H. Stöcker, W. Greiner, Phys. Rev. C 66, 064902 (2002).ADSGoogle Scholar
  11. 11.
    G.Q. Li, C.M. Ko, G.E. Brown, Nucl. Phys. A 606, 568 (1996).ADSGoogle Scholar
  12. 12.
    D.K. Srivastava, B. Sinha, Charles Gale, Phys. Rev. C 53, R567 (1996).ADSGoogle Scholar
  13. 13.
    D.K. Srivastava, J. Phys. G: Nucl. Part. Phys. 35, 104026 (2008).ADSGoogle Scholar
  14. 14.
    D.K. Srivastava, Rupa Chatterjee, Phys. Rev. C 80, 054914 (2009).ADSGoogle Scholar
  15. 15.
    Jitesh R. Bhatt, V. Sreekanth, Int. J. Mod. Phys. E 19, 299 (2010).ADSGoogle Scholar
  16. 16.
    F. Laue et al., Phys. Rev. Lett. 82, 1640 (1999).ADSGoogle Scholar
  17. 17.
    C. Sturm et al., Phys. Rev. Lett. 86, 39 (2001).ADSGoogle Scholar
  18. 18.
    KaoS Collaboration (A. Förster et al.), J. Phys. G 28, 2011 (2002).ADSGoogle Scholar
  19. 19.
    M. Menzel et al., Phys. Lett. B 495, 26 (2000).ADSGoogle Scholar
  20. 20.
    C.M. Ko, J. Phys. G 27, 327 (2001).ADSGoogle Scholar
  21. 21.
    G.Q. Li, C.-H. Lee, G.E. Brown, Nucl. Phys. A 625, 372 (1997).ADSGoogle Scholar
  22. 22.
    S. Pal, C.M. Ko, Z.-W. Lin, Phys. Rev. C 64, 042201 (2001).ADSGoogle Scholar
  23. 23.
    W. Cassing, L. Tolos, E.L. Bratkovskaya, A. Ramos, Nucl. Phys. A 727, 59 (2003).ADSGoogle Scholar
  24. 24.
    A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stöcker, Phys. Rev. C 70, 044904 (2004).ADSGoogle Scholar
  25. 25.
    A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006).ADSGoogle Scholar
  26. 26.
    A. Mishra, S. Schramm, W. Greiner, Phys. Rev. C 78, 024901 (2008).ADSGoogle Scholar
  27. 27.
    Amruta Mishra, Arvind Kumar, Sambuddha Sanyal, S. Schramm, Eur. Phys. J. A 41, 205 (2009).ADSGoogle Scholar
  28. 28.
    D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986).ADSGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.
    K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, R.H. Landau, Phys. Rev. C 59, 2824 (1999).ADSGoogle Scholar
  33. 33.
    A. Sibirtsev, K. Tsushima, A.W. Thomas, Eur. Phys. J. A 6, 351 (1999).ADSGoogle Scholar
  34. 34.
    A. Hayashigaki, Phys. Lett. B 487, 96 (2000).ADSGoogle Scholar
  35. 35.
    T. Hilger, R. Thomas, B. Kämpfer, Phys. Rev. C 79, 025202 (2009).ADSGoogle Scholar
  36. 36.
    P. Morath, W. Weise, S.H. Lee, 17th Autumn School: Lisbon 1999, QCD: Perturbative or Nonperturbative? (World Scientific, Singapore) p. 425.Google Scholar
  37. 37.
    L. Tolos, J. Schaffner-Bielich, A. Mishra, Phys. Rev. C 70, 025203 (2004).ADSGoogle Scholar
  38. 38.
    L. Tolos, J. Schaffner-Bielich, H. Stöcker, Phys. Lett. B 635, 85 (2006).ADSGoogle Scholar
  39. 39.
    T. Mizutani, A. Ramos, Phys. Rev. C 74, 065201 (2006).ADSGoogle Scholar
  40. 40.
    L. Tolos, A. Ramos, T. Mizutani, Phys. Rev. C 77, 015207 (2008).ADSGoogle Scholar
  41. 41.
    E.A. Veit, B.K. Jennings, A.W. Thomas, R.C. Berrett, Phys. Rev. D 31, 1033 (1985).ADSGoogle Scholar
  42. 42.
    L. Tolos, A. Ramos, A. Polls, T.T.S. Kuo, Nucl. Phys. A 690, 547 (2001).ADSGoogle Scholar
  43. 43.
    V. Koch, Phys. Lett. B 337, 7 (1994).ADSGoogle Scholar
  44. 44.
    P.B. Siegel, W. Weise, Phys. Rev. C 38, 2221 (1998).ADSGoogle Scholar
  45. 45.
    CLEO Collaboration (M. Arutso et al.), Phys. Rev. Lett. 86, 4479 (2001).ADSGoogle Scholar
  46. 46.
    Belle Collaboration (R. Mizuk et al.), Phys. Rev. Lett. 94, 122002 (2005).ADSGoogle Scholar
  47. 47.
    BELLE Collaboration (R. Chistov et al.), Phys. Rev. Lett. 97, 162001 (2006).ADSGoogle Scholar
  48. 48.
    BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 97, 232001 (2006).ADSGoogle Scholar
  49. 49.
    BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 98, 012001 (2007).ADSGoogle Scholar
  50. 50.
    Belle Collaboration (R. Mizuk et al.), Phys. Rev. Lett. 98, 262001 (2007).ADSGoogle Scholar
  51. 51.
    L. Tolos, C. García-Recio, J. Nieves, Phys. Rev. C 80, 065202 (2009).ADSGoogle Scholar
  52. 52.
    J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763, 90 (2005).ADSGoogle Scholar
  53. 53.
    K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16, 255 (1966).MathSciNetADSGoogle Scholar
  54. 54.
    Riazuddin, Fayyazuddin, Phys. Rev. 147, 1071 (1966).MathSciNetADSGoogle Scholar
  55. 55.
    M.F.M. Lutz, C.L. Korpa, Phys. Lett. B 633, 43 (2006).ADSGoogle Scholar
  56. 56.
    C. Garcia-Recio, V.K. Magas, T. Mizutani, J. Nieves, A. Ramos, L.L. Salcedo, L. Tolos, Phys. Rev. D 79, 054004 (2009).ADSGoogle Scholar
  57. 57.
    D. Gamermann, C. Garcia-Recio, J. Nieves, L.L. Salcedo, L. Tolos, Phys. Rev. D 81, 094016 (2010).ADSGoogle Scholar
  58. 58.
    C. Garcia-Recio, J. Nieves, L. Tolos, Phys. Lett. B 690, 369 (2010).ADSGoogle Scholar
  59. 59.
    Laura Tolos, Raquel Molina, Daniel Gamermann, Eulogio Oset, Nucl. Phys. A 827, 249c (2009).ADSGoogle Scholar
  60. 60.
    NA50 Collaboration (M. Gonin et al.), Nucl. Phys. A 610, 404 (1996).ADSGoogle Scholar
  61. 61.
    NA50 Collaboration (M.C. Abreu et al.), Eur. Phys. J. C 14, 443 (200).Google Scholar
  62. 62.
    NA50 Collaboration (L. Rammello et al.), Nucl. Phys. A 638, 261 (1998).Google Scholar
  63. 63.
    M.C. Abreu et al., Phys. Lett. B 450, 456 (1999).ADSGoogle Scholar
  64. 64.
    L. Ramello et al., Nucl. Phys. A 715, 242 (2003).Google Scholar
  65. 65.
    E705 Collaboration (L. Antoniazzi et al.), Phys. Rev. Lett. 70, 383 (1993).ADSGoogle Scholar
  66. 66.
    Y. Lemoigne et al., Phys. Lett. B 113, 509 (1982).ADSGoogle Scholar
  67. 67.
    Ye.S. Golubeva, E.L. Bratkovskaya, W. Cassing, L.A. Kondratyuk, Eur. Phys. J. A 17, 275 (2003).ADSGoogle Scholar
  68. 68.
    S.H. Lee, C.M. Ko, Phys. Rev. C 67, 038202 (2003).ADSGoogle Scholar
  69. 69.
    A. Hayashigaki, Prog. Theor. Phys. 101, 923 (1999).ADSGoogle Scholar
  70. 70.
    B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548, 153 (2002).ADSGoogle Scholar
  71. 71.
    G. Krein, A.W. Thomas, K. Tsushima, Phys. Lett. B 697, 136 (2011).ADSGoogle Scholar
  72. 72.
    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986).ADSGoogle Scholar
  73. 73.
    J.P. Blaizot, J.Y. Ollitrault, Phys. Rev. Lett. 77, 1703 (1996).ADSGoogle Scholar
  74. 74.
    A. Sibirtsev, K. Tsushima, K. Saito, A.W. Thomas, Phys. Lett. B 484, 25 (2000).ADSGoogle Scholar
  75. 75.
    A. Capella, E.G. Ferreiro, Eur. Phys. J. C 42, 419 (2005).ADSGoogle Scholar
  76. 76.
    N. Armesto, A. Capella, E.G. Ferreiro, A. Kaidalov, D. Sousa, Nucl. Phys. A 698, 583 (2002).ADSGoogle Scholar
  77. 77.
    Sean Gavin, Ramona Vogt, Nucl. Phys. A 610, 442 (1996).ADSGoogle Scholar
  78. 78.
    Sean Gavin, Ramona Vogt, Phys. Rev. Lett. 78, 1006 (1997).ADSGoogle Scholar
  79. 79.
    S. Gavin, R. Vogt, Nucl. Phys. B 345, 104 (1990).ADSGoogle Scholar
  80. 80.
    B. Zhang, C.M. Ko, B.A. Li, Z. Lin, B.H. Sa, Phys. Rev. C 62, 054905 (2000).ADSGoogle Scholar
  81. 81.
    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 623, 570 (1997).ADSGoogle Scholar
  82. 82.
    E.L. Bratkovskaya, W. Cassing, H. Stöcker, Phys. Rev. C 67, 054905 (2003).ADSGoogle Scholar
  83. 83.
    W. Cassing, C.M. Ko, Phys. Lett. B 396, 39 (1997).ADSGoogle Scholar
  84. 84.
    W. Cassing, E.L. Bratkovskaya, S. Juchem, Nucl. Phys. A 674, 249 (2000).ADSGoogle Scholar
  85. 85.
    P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999).ADSGoogle Scholar
  86. 86.
    W. Liu, C.M. Ko, Z.W. Lin, Phys. Rev. C 65, 015203 (2001).ADSGoogle Scholar
  87. 87.
    Arvind Kumar, Amruta Mishra, Phys, Rev. C 81, 065204 (2010).ADSGoogle Scholar
  88. 88.
    D. Zschiesche, A. Mishra, S. Schramm, H. Stöcker, W. Greiner, Phys. Rev. C 70, 045202 (2004).ADSGoogle Scholar
  89. 89.
    A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, W. Greiner, Phys. Rev. C 69, 024903 (2004).ADSGoogle Scholar
  90. 90.
    A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stöcker, Phys. Rev. C 69, 015202 (2004).ADSGoogle Scholar
  91. 91.
    Amruta Mishra, Arindam Mazumdar, Phys. Rev. C 79, 024908 (2009).ADSGoogle Scholar
  92. 92.
    Arvind Kumar, Amruta Mishra, Phys. Rev. C 82, 045207 (2010).ADSGoogle Scholar
  93. 93.
    A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 8, 2223 (1973).ADSGoogle Scholar
  94. 94.
    A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 9, 1415 (1974).ADSGoogle Scholar
  95. 95.
    A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 11, 1272 (1975).ADSGoogle Scholar
  96. 96.
    T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys. Rev. D 55, 4157 (1997).ADSGoogle Scholar
  97. 97.
    S. Weinberg, Phys. Rev. 166, 1568 (1968).ADSGoogle Scholar
  98. 98.
    S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969).ADSGoogle Scholar
  99. 99.
    C.G. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969).ADSGoogle Scholar
  100. 100.
    W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969).ADSGoogle Scholar
  101. 101.
    J. Schechter, Phys. Rev. D 21, 3393 (1980).ADSGoogle Scholar
  102. 102.
    Thomas D. Cohen, R.J. Furnstahl, David K. Griegel, Phys. Rev. C 45, 1881 (1992).ADSGoogle Scholar
  103. 103.
    B. Borasoy, U-G. Meissner, Int. J. Mod. Phys. A 11, 5183 (1996).ADSGoogle Scholar
  104. 104.
    D. Röder, J. Ruppert, D.H. Rischke, Phys. Rev. D 68, 016003 (2003).ADSGoogle Scholar
  105. 105.
    F. Klingl et al., Phys. Rev. Lett. 82, 3396 (1999).ADSGoogle Scholar
  106. 106.
    M.E. Peskin, Nucl. Phys. B 156, 365 (1979).MathSciNetADSGoogle Scholar
  107. 107.
    Su Houng Lee, Kenji Morita, Phys. Rev. D 79, 011501 (2009).ADSGoogle Scholar
  108. 108.
    A. Le Yaouanc et al., Phys. Lett. B 71, 397 (1977).ADSGoogle Scholar
  109. 109.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSGoogle Scholar
  110. 110.
    Sugsik Kim, Su Houng Lee, Nucl. Phys. A 679, 517 (2001).ADSGoogle Scholar
  111. 111.
    Cesareo A. Dominguez, Marcelo Loewe, J. Cristobal Rojas, Yingwen Zhang, arXiv 0908.2709 [hep-ph].Google Scholar
  112. 112.
    Kenji Morita, Su Houng Lee, Phys. Rev. Lett. 100, 022301 (2008).ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology, Delhi, Hauz KhasNew DelhiIndia

Personalised recommendations