In-medium operator product expansion for heavy-light-quark pseudoscalar mesons

  • Sven Zschocke
  • Thomas Hilger
  • Burkhard Kämpfer
Regular Article - Theoretical Physics

Abstract

The operator product expansion (OPE) for heavy-light-quark pseudoscalar mesons (D -mesons and B -mesons) in medium is determined, both for a moving meson with respect to the surrounding medium as well as for a meson at rest. First of all, the OPE is given in terms of normal-ordered operators up to mass dimension 5, and the mass of the heavy quark and the mass of the light quark are kept finite. The Wilson coefficients of such an expansion are infrared (IR) divergent in the limit of a vanishing light-quark mass. A consistent separation of scales necessitates an OPE in terms of non-normal-ordered operators, which implies operator mixing, where the IR-divergences are absorbed into the operators. It is shown that the Wilson coefficients of such an expansion are IR-stable, and the limit of a vanishing light-quark mass is perfomed. Details of the major steps for the calculation of the Wilson coefficients are presented. By a comparison with previous results obtained by other theoretical groups we have found serious disagreements.

Keywords

Operator Product Expansion Mass Dimension Quark Propagator Gluon Condensate Lorentz Index 

References

  1. 1.
    E598 Collaboration, Phys. Rev. Lett. 33, 1404 (1974).CrossRefGoogle Scholar
  2. 2.
    SLAC-SP-017 Collaboration, Phys. Rev. Lett. 33, 1406 (1974).CrossRefGoogle Scholar
  3. 3.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  4. 4.
  5. 5.
    J. Schaffner-Bielich, I.N. Mishustin, J. Bondorf, Nucl. Phys. A 625, 325 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    NA50 Collaboration, Eur. Phys. J. C 39, 335 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    M.I. Gorenstein, A.P. Kostyuk, H. Stöcker, W. Greiner, J. Phys. G 27, L47 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Campbell, E.W.N. Glover, C.J. Maxwell, Phys. Rev. Lett. 81, 1568 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    A.I. Bochkarev, M.E. Shaposhnikov, Phys. Lett. B 145, 276 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    A.I. Bochkarev, M.E. Shaposhnikov, Nucl. Phys. B 268, 220 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B 394, 221 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. A 556, 467 (1991).Google Scholar
  16. 16.
    S. Zschocke, O.P. Pavlenko, B. Kämpfer, Eur. Phys. J. A 15, 529 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    K. Wilson, Phys. Rev. 179, 1499 (1969).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    C. Itzykson, J.-B. Zuber, Quantum Field Theory (McGraw Hill, 1980), (Dover, 2006).Google Scholar
  19. 19.
    T. Muta, Foundations of Quantum Chromodynamics (World Scientific Publishing, 1997).Google Scholar
  20. 20.
    P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner, Lect. Notes Phys., Vol. 194 (Springer, 1984).Google Scholar
  21. 21.
    T.M. Aliev, V.L. Eletsky, Sov. J. Nucl. Phys. 38, 936 (1983) T.M. Aliev, V.L. Eletsky, Yad. Fiz. 38.Google Scholar
  22. 22.
    S. Narison, QCD Spectral Sum Rules, Lect. Notes Phys. Vol. 26 (World Scientific, 1981).Google Scholar
  23. 23.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    L.J. Reinders, S. Yazaki, R. Rubinstein, Phys. Lett. B 97, 257 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    L.J. Reinders, S. Yazaki, R. Rubinstein, Phys. Lett. B 103, 63 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    S.C. Generalis, D.J. Broadhurst, Phys. Lett. B 139, 85 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    D.J. Broadhurst, Phys. Lett. B 101, 423 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    S.C. Generalis, Ph.D. Thesis, Open University report No. OUT-4102-13 (1984).Google Scholar
  29. 29.
    M. Jamin, M. Münz, Z. Phys. C 60, 569 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    K.G. Chetyrkin, C.A. Dominguez, D. Pirjol, K. Schilcher, Phys. Rev. D 51, 5090 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    A. Hayashigaki, Phys. Lett. B 487, 96 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    P. Morath, Schwere Quarks in dichter Materie, Ph.D. Thesis, Technische Universität München (2001).Google Scholar
  33. 33.
    P. Morath, W. Weise, S.-H. Lee, in Lisbon 1999, QCD: Perturbative or nonperturbative? (World Scientific, 1999) p. 425.Google Scholar
  34. 34.
    T. Hilger, R. Thomas, B. Kämpfer, Phys. Rev. C 79, 025202 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    T. Hilger, B. Kämpfer, arXiv:0904.3491 (2009) Proceedings of the 47th International Winter Meeting On Nuclear Physics, 26-30 Jan 2009, Bormio, Italy.
  36. 36.
    R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  37. 37.
    A.K. Das, Finite Temperature Field Theory (World Scientific, Singapore, 1997).Google Scholar
  38. 38.
    W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. D 18, 3998 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    F.V. Tkachov, Phys. Lett. B 125, 85 (1983).ADSCrossRefGoogle Scholar
  40. 40.
    S. Narison, QCD as a Theory of Hadrons: From Partons to Confinement, in Camb. Mon. Part. Phys., Nucl. Phys. Cosmol. Vol. 17 (Cambridge University Press, 2004).Google Scholar
  41. 41.
    V.P. Spiridonov, K.G. Chetyrkin, Sov. J. Nucl. Phys. 47, 522 (1988).Google Scholar
  42. 42.
    S.C. Generalis, D.J. Broadhurst, Phys. Lett. B 165, 175 (1985).ADSCrossRefGoogle Scholar
  43. 43.
    A.G. Grozin, Y.F. Pinelis, Z. Phys. C 33, 419 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    A.G. Grozin, Int. J. Mod. Phys. A 10, 3497 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    A.R. Zhitnitsky, Phys. Rev. D 55, 3006 (1997).ADSCrossRefGoogle Scholar
  46. 46.
    I. Tamm, J. Phys. 9, 449 (1945).Google Scholar
  47. 47.
    S.M. Dancoff, Phys. Rev. 78, 382 (1950).ADSCrossRefMATHGoogle Scholar
  48. 48.
    M. Rosa-Clot, M. Testa, Nuovo Cimento A 78, 113 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    M. Rosa-Clot, M. Testa, Phys. Rev. C 23, 2730 (1981).ADSCrossRefGoogle Scholar
  50. 50.
    H. Holtmann, A. Szczurek, J. Speth, Nucl. Phys. A 569, 631 (1996).ADSCrossRefGoogle Scholar
  51. 51.
    K.G. Chetyrkin, F.V. Tkachov, S.G. Gorishnii, Phys. Lett. B 119, 407 (1982).ADSCrossRefGoogle Scholar
  52. 52.
    F.V. Tkachov, Phys. Lett. B 124, 212 (1983).ADSCrossRefGoogle Scholar
  53. 53.
    C.H. Llewellyn Smith, J.P. de Vries, Nucl. Phys. B 296, 991 (1988).ADSCrossRefGoogle Scholar
  54. 54.
    S. Zschocke, B. Kämpfer, Open charm mesons in nuclear matter with QCD sum rule approach (2006), unpublished.Google Scholar
  55. 55.
    T. Hilger, QCD sum rules for D mesons in nuclear matter, Diploma Thesis, Technische Universität Dresden (2008).Google Scholar
  56. 56.
    T. Hilger, B. Kämpfer, S. Leupold, Phys. Rev. C 84, 045202 (2011).ADSCrossRefGoogle Scholar
  57. 57.
    T. Hilger, R. Schulze, B. Kämpfer, J. Phys. G 37, 094054 (2010).ADSCrossRefGoogle Scholar
  58. 58.
    T. Hilger, B. Kämpfer, Nucl. Phys. Proc. Suppl. 207, 277 (2010).ADSCrossRefGoogle Scholar
  59. 59.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).Google Scholar
  60. 60.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977).ADSCrossRefGoogle Scholar
  61. 61.
    Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).ADSGoogle Scholar
  62. 62.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Proceedings of Neutrino 78, West Lafayette C 278 (1978).Google Scholar
  63. 63.
    S. Narison, Phys. Lett. B 210, 238 (1988).ADSCrossRefGoogle Scholar
  64. 64.
    A. Hayashigaki, K. Terasaki, arXiv:hep-ph/0411285 (2004).
  65. 65.
    S. Narison, Phys. Lett. B 520, 115 (2001).ADSCrossRefGoogle Scholar
  66. 66.
    S. Narison, Phys. Lett. B 605, 319 (2005).ADSCrossRefGoogle Scholar
  67. 67.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Fortschr. Phys. 32, 585 (1984).CrossRefGoogle Scholar
  68. 68.
    V.A. Fock, Sov. Phys. 12, 404 (1937).Google Scholar
  69. 69.
    J. Schwinger, Phys. Rev. 82, 684 (1952).Google Scholar
  70. 70.
    C. Cronström, Phys. Lett. B 90, 267 (1980).MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    E. Yehudai, HIP: Symbolic high-energy physics calculations using maple, FERMILAB-PUB-92-022-T (1992).Google Scholar
  72. 72.
    E. Leader, E. Predazzi, An introduction to gauge theories and modern particle physics, in Camb. Mon. Part. Phys., Nucl. Phys. Cosmol., Vol. 4 (Cambridge University Press, 1996).Google Scholar
  73. 73.
    X.M. Jin, T. D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 47, 2882 (1993).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sven Zschocke
    • 1
    • 2
  • Thomas Hilger
    • 3
    • 4
  • Burkhard Kämpfer
    • 3
    • 4
  1. 1.Institut für Planetare Geodäsie, Lohrmann-ObservatoriumTU DresdenDresdenGermany
  2. 2.Dept. of Physics and TechnologyUniversity of BergenBergenNorway
  3. 3.Helmholtz-Zentrum Dresden-Rossendorf, PF 510119DresdenGermany
  4. 4.Institut für Theoretische PhysikTU DresdenDresdenGermany

Personalised recommendations