Experimental investigation of a low-cost solid state detector with high spatial resolution for ultracold neutrons

  • Th. Lauer
  • P. Geltenbort
  • P. Hoebel
  • M. Kaoui
  • H. C. Koch
  • A. Kraft
  • U. Schmidt
  • Yu. Sobolev
Special Article - Tools for Experiment and Theory

Abstract

An ultracold-neutron detector based on a commercial CMOS webcam was investigated for the first time at the instrument PF2 of the Institut Laue-Langevin. In this feasibility study two different neutron converters, 10B and 6Li, were compared. For a standard high-definition videochip with an active area of 3.2 mm × 4.8 mm, a spatial resolution of ≈ 0.3 μm is possible to obtain. For a 430 nm thin 6Li converter, positioned in front of the webcam, a detection efficiency of (47.1 ± 0.6)% was found.

Keywords

AlMg Ultracold Neutron 241Am Source CMOS Sensor Neutron Capture Reaction 

References

  1. 1.
    Ya.B. Zeldovich, Sov. Phys. JETP 9, 1389 (1959).Google Scholar
  2. 2.
    V.I. Lushikov et al., JETP Lett. 9, 23 (1969).ADSGoogle Scholar
  3. 3.
    A. Steyerl, Phys. Lett. B 29, 33 (1969).CrossRefADSGoogle Scholar
  4. 4.
    C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    S. Arzumanov et al., Phys. Lett. B 483, 15 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A. Serebrov et al., Phys. Lett. B 605, 72 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. Pichlmaier, Phys. Lett. B 693, 221 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    T. Jenke et al., Nat. Phys. 7, 468 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Jakubek et al., Nucl. Instrum. Methods A 600, 651 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    J. Jakubek et al., Nucl. Instrum. Methods A 607, 45 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    S. Kawasaki et al., Nucl. Instrum. Methods A 615, 42 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A.I. Frank, Atomic Energy 66, 106 (1989).CrossRefGoogle Scholar
  13. 13.
    S.S. Arzumanov et al., JETP Lett. 39, 590 (1984).ADSGoogle Scholar
  14. 14.
    R. Golub, Rev. Mod. Phys. 68, 329 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    H. Rauch, F. Grass, B. Feigl, Nucl. Instrum. Methods 46, 153 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    M. Winter for the IPHC-IRFU Collaboration, Nucl. Instrum. Methods A 623, 192 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Klein, Ch. Schmidt, Nucl. Instrum. Methods A 628, 9 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. Sobolev et al., Nucl. Instrum. Methods A 614, 461 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    I. Altarev et al., Nucl. Instrum. Methods A 570, 101 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    Private communication with M. Daum.Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Th. Lauer
    • 1
  • P. Geltenbort
    • 3
  • P. Hoebel
    • 1
  • M. Kaoui
    • 1
  • H. C. Koch
    • 1
  • A. Kraft
    • 1
  • U. Schmidt
    • 2
  • Yu. Sobolev
    • 1
  1. 1.Institute for PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany
  3. 3.Institut Laue-LangevinGrenoble Cedex 9France

Personalised recommendations