Advertisement

Blocking of coupling to the 02 + excitation in 154Gd by the [505]11/2- neutron in 155Gd

  • J. F. Sharpey-Schafer
  • T. E. Madiba
  • S. P. Bvumbi
  • E. A. Lawrie
  • J. J. Lawrie
  • A. Minkova
  • S. M. Mullins
  • P. Papka
  • D. G. Roux
  • J. Timár
Open Access
Letter

Abstract.

The concept that the first excited 0+ states in N = 90 nuclei are not a \( \beta\) -vibration but a second vacuum formed by the combination of the quadrupole pairing force and the low density of oblate orbitals near the Fermi surface is supported by the blocking of this collective mode in 154Gd from coupling to the [505]11/2- single-particle quasi-neutron orbital in 155Gd . The coupling of this orbital to the 2+ \( \gamma\) -vibration in 154Gd is observed since this coupling is not Pauli-blocked.

Keywords

Collective Mode Pairing Strength Prolate Orbital Oblate Orbital Partial Decay Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 5 (2011) (this issue)ADSCrossRefGoogle Scholar
  2. 2.
    J. Borggreen, G. Sletten, Nucl. Phys. A 143, 255 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Griffin, A.D. Jackson, A.B. Volkov, Phys. Lett. B 36, 281 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    W.I. van Rij, S.H. Kahana, Phys. Rev. Lett. 28, 50 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Abdulvagabova, S.P. Ivanova, N.I. Pyatov, Phys. Lett. B 38, 251 (1972)CrossRefGoogle Scholar
  6. 6.
    D.R. Bès, R.A. Broglia, B. Nilsson, Phys. Lett. B 40, 338 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    I. Ragnarsson, R.A. Broglia, Nucl. Phys. A 263, 315 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    J.D. Garrett et al., Phys. Lett. B 118, 297 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Peterson, J.D. Garrett, Nucl. Phys A. 414, 59 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Nelson et al., Can. J. Phys. 51, 2000 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    O.P. Jolly, PhD Thesis, McMaster University (1976)Google Scholar
  12. 12.
    C.R. Hirning, D.G. Burke, Can. J. Phys. 55, 1137 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    D.G. Burke, J.C. Waddington, O.P. Jolly, Nucl. Phys. A 668, 716 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    R.K.J. Sandor, Shape Transitions in the Nd-isotopes, PhD Thesis, Vrije University, Amsterdam (1991)Google Scholar
  15. 15.
    Th.W. Elze, J.S. Boyno, J.R. Huizenga, Nucl. Phys. A 187, 473 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    D.G. Fleming et al., Phys. Rev. C 8, 806 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Bjerregaard et al., Nucl. Phys. 86, 145 (1966)CrossRefGoogle Scholar
  18. 18.
    M.A.M. Shahabuddin et al., Nucl. Phys. A 340, 109 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    M. Jaskola, P.O. Tjøm, B. Elbeck, Nucl. Phys. A 133, 65 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    G. Løvhøiden, D.G. Burke, J.C. Waddington, Can. J. Phys. 51, 1368 (1973)Google Scholar
  21. 21.
    H.H. Schmidt et al., J. Phys. G 12, 411 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Sharpey-Schafer, Nucl. Phys. News. Int. 14, 5 (2004)CrossRefGoogle Scholar
  23. 23.
    D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 306, 297 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Sharpey-Schafer, Proceedings of FINUSTAR2 Conference, Crete, Sept. 2007, edited by S.V. Harissopulos, R. Julin, AIP Conf. Proc. 1012, 19 (2008)Google Scholar
  25. 25.
    T. Hayakawa et al., Nucl. Phys. A 657, 3 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    K. Schreckenbach, W. Gelletly, Phys. Lett. B 94, 298 (1980)ADSCrossRefGoogle Scholar
  27. 27.
    W.D. Kulp et al., Phys. Rev. C 71, 041303(R) (2005)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    G. Vandenput et al., Phys. Rev. C 33, 1141 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    M.K. Khan et al., Nucl. Phys. A 567, 495 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    J. Rekstad et al., Nucl. Phys. A 348, 93 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    G. Løvhøiden et al., Nucl. Phys. A 369, 461 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    S. Galès, G.M. Crawley, D. Weber, B. Zwieglinski, Nucl. Phys. A 398, 19 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    H.E. Martz et al., Nucl. Phys. A 439, 299 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    T. Hayakawa et al., Eur. Phys. J. A 9, 153 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    T.B. Brown et al., Phys. Rev. C 66, 064320 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    R. Vlastou et al., Nucl. Phys. A 580, 133 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    T. Hayakawa et al., Eur. Phys. J. A 15, 299 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    A. Pipidis et al., Phys. Rev. C 72, 064307 (2005)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • J. F. Sharpey-Schafer
    • 1
    • 2
    • 3
  • T. E. Madiba
    • 1
  • S. P. Bvumbi
    • 1
  • E. A. Lawrie
    • 3
  • J. J. Lawrie
    • 3
  • A. Minkova
    • 4
  • S. M. Mullins
    • 3
  • P. Papka
    • 3
    • 5
  • D. G. Roux
    • 1
  • J. Timár
    • 6
  1. 1.University of Western CapeDepartment of PhysicsBellvilleSouth Africa
  2. 2.University of ZululandDepartment of PhysicsKwa DlangezwaSouth Africa
  3. 3.iThemba Laboratory for Accelerator Based SciencesSomerset-WestSouth Africa
  4. 4.Faculty of PhysicsSt. Kliment Ohridski University of SofiaSofiaBulgaria
  5. 5.University of StellenboschDepartment of PhysicsStellenboschSouth Africa
  6. 6.ATOMKIDebrecenHungary

Personalised recommendations