Skip to main content
Log in

Shell model and band structures in 19O

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have studied the reaction ( ^7Li, p) on 13C targets at E lab = 44 MeV, populating states in the oxygen isotope 19O . The experiments were performed at the Tandem Laboratory (Maier-Leibniz Laboratorium) using the high-resolution Q3D magnetic spectrometer. States were populated up to an excitation energy of 21MeV, with an overall energy resolution of 45keV. We discuss shell model states and cluster bands related to the rotational bands in the 18O -isotope, using the weak-coupling approach. Similar to 18O , the broken intrinsic reflection symmetry in these states must give rise to rotational bands as parity doublets, so two K = 3/2 bands (parities, + and - are proposed with large moments of inertia. These are discussed in terms of an underlying cluster structure, ( ^14C ⊗ n\( \alpha\)) . An extended molecular binding diagram is proposed which includes the 14C -cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Horiuchi, K. Ikeda, Prog. Theor. Phys. Jpn. 40, 277 (1968)

    Article  ADS  Google Scholar 

  2. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)

    Article  ADS  Google Scholar 

  3. W. von Oertzen, Z. Phys. A 357, 355 (1997)

    Article  ADS  Google Scholar 

  4. W. von Oertzen, Eur. Phys. J. A 11, 403 (2001)

    Article  ADS  Google Scholar 

  5. M. Milin et al., Eur. Phys. J. A 41, 335 (2009)

    Article  ADS  Google Scholar 

  6. W. von Oertzen et al., Eur. Phys. J. A 43, 17 (2010)

    Article  ADS  Google Scholar 

  7. W. von Oertzen, H.G. Bohlen, T. Dorsch, in preparation

  8. T. Dorsch, PhD Thesis, Technical University München (2008)

  9. C. Wheldon, Tz. Kokalova, W. von Oertzen et al., Eur. Phys. J. A 26, 321 (2005)

    Article  ADS  Google Scholar 

  10. D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995) and later additions 636

    Article  ADS  Google Scholar 

  11. T. Stammbach, S.E. Darden, P. Huber, I. Sick, Helv. Phys. Acta 40, 915 (1967)

    Google Scholar 

  12. H.T. Fortune, H.G. Bingham, Nucl. Phys. A 432, 197 (1977)

    Article  ADS  Google Scholar 

  13. J.B. McGrory, B.H Wildenthal, Phys. Rev. C 7, 974 (1973)

    Article  ADS  Google Scholar 

  14. E.K. Warburton, Phys. Rev. C 38, 935 (1988)

    Article  ADS  Google Scholar 

  15. C.S. Sumithrarachchi, D.W. Anthony, P.A. Lofy, D.J. Morrissey, Phys. Rev. C 74, 024322 (2006)

    Article  ADS  Google Scholar 

  16. A. Volya, V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005)

    Article  ADS  Google Scholar 

  17. A. Volya, V. Zelevinsky, Phys. Rev. C 74, 064314 (2006)

    Article  ADS  Google Scholar 

  18. M. Wiedeking et al., Phys. Rev. C 77, 054305 (2008)

    Article  ADS  Google Scholar 

  19. Y. Nagai, M. Segawa, T. Ohsaki, H. Matsue, K. Muto, Phys. Rev. C 76, 051301(R) (2007)

    Article  ADS  Google Scholar 

  20. T. Ohsaki, M. Igashira, Y. Nagai, M. Segawa, K. Muto, Phys. Rev. C 77, 051303(R) (2008)

    Article  ADS  Google Scholar 

  21. H.G. Bohlen et al., Eur. Phys. J. A 31, 279 (2007)

    Article  ADS  Google Scholar 

  22. W.D.M. Rae, A. Etchegoyen, B.A. Brown, OXBASH, The Oxford - Buenos Aires - MSU shell model code, Technical Report 524, Michigan State University Cyclotron Laboratory (1985)

  23. H.G. Bohlen et al., Phys. Rev. C 68, 054606 (2003)

    Article  ADS  Google Scholar 

  24. J. Meissner, H. Schatz, J. Görres, H. Herndl, M. Wiescher, H. Beer, F. Käppeler, Phys. Rev. C 53, 459 (1996)

    Article  ADS  Google Scholar 

  25. M.G. Pellegriti et al., Phys. Lett. B 659, 864 (2008)

    Article  ADS  Google Scholar 

  26. N. Furutachi,, arXiv:0706.0145v1 [nucl-th] (2007)

  27. N. Furutachi, et al., Prog. Theor. Phys. Jpn. 119, 403 (2008)

    Article  ADS  Google Scholar 

  28. M. Gai et al., Phys. Rev. C 43, 2127 (1991)

    Article  ADS  Google Scholar 

  29. M. Gai et al., Phys. Rev. C 45, R2548 (1992)

    Article  ADS  Google Scholar 

  30. K. Sato, M. Tanigaki, T. Onishi et al., Nucl. Phys. A 654, Suppl. 1, 735c (1999)

    ADS  Google Scholar 

  31. W. von Oertzen et al., Eur. Phys. J. A 21, 193 (2004)

    Article  ADS  Google Scholar 

  32. N. Itagaki et al., Phys. Rev. Lett. 92, 142501 (2004)

    Article  ADS  Google Scholar 

  33. H.G. Bohlen, Code SPEC (Version F), HMI Berlin, private communication (2003)

  34. M. Milin, W. von Oertzen, Eur. Phys. J. A 14, 295 (2002)

    Article  ADS  Google Scholar 

  35. M. Milin, W. von Oertzen, Fizika (Zagreb) B 12, 61 (2003)

    ADS  Google Scholar 

  36. R. Bansal, J.B. French, Phys. Lett. 11, 145 (1964)

    Article  ADS  Google Scholar 

  37. L. Zamick, Phys. Lett. 19, 580 (1965)

    Article  ADS  Google Scholar 

  38. H.T. Fortune, J.N. Bishop, L.R. Medsker, B.H. Wildenthal, Phys. Rev. Lett. 41, 527 (1978)

    Article  ADS  Google Scholar 

  39. H.T. Fortune, R. Sherr, Phys. Rev. C 72, 034304 (2005)

    Article  ADS  Google Scholar 

  40. A. Bohr, B.R. Mottelson, Nuclear Structure Vol. II (World Scientific, 1998)

  41. W. Nazarewicz et al., Phys. Rev. Lett. 52, 1272 (1984)

    Article  ADS  Google Scholar 

  42. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 350 (1996)

    Article  ADS  Google Scholar 

  43. P. Descouvemont, D. Baye, Phys. Rev. C 31, 2274 (1985)

    Article  ADS  Google Scholar 

  44. P.E. Koehler, H.D. Knox, D.A. Resler, R.O. Lane, G.F. Auchampaugh, Nucl. Phys. A 453, 429 (1986)

    Article  ADS  Google Scholar 

  45. S. Sen, S.E. Darden, H.R. Hiddleston, W.A. Yoh, Nucl. Phys. A 219, 429 (1974)

    Article  ADS  Google Scholar 

  46. R. Moreh, Nucl. Phys. 70, 293 (1965)

    Article  Google Scholar 

  47. J.L. Wiza, R. Middleton, Phys. Rev. 143, 676 (1966)

    Article  ADS  Google Scholar 

  48. D.J. Crozier, H.T. Fortune, R. Middleton, J.L. Wiza, Phys. Rev. C 11, 393 (1975)

    Article  ADS  Google Scholar 

  49. J.L. Wiza, H.G. Bingham, H.T. Fortune, Phys. Rev. C 7, 2175 (1973)

    Article  ADS  Google Scholar 

  50. H.T. Fortune, H.G. Bingham, Phys. Rev. C 10, 2174 (1974)

    Article  ADS  Google Scholar 

  51. H.T. Fortune, H.G. Bingham, Nucl. Phys. A 293, 197 (1977)

    Article  ADS  Google Scholar 

  52. J.C. Armstrong, K.S. Quisenberry, Phys. Rev. 122, 1508 (1961)

    Article  ADS  Google Scholar 

  53. M. Yasue et al., Phys. Rev. C 46, 1242 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Milin.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Oertzen, W., Milin, M., Dorsch, T. et al. Shell model and band structures in 19O. Eur. Phys. J. A 46, 345–358 (2010). https://doi.org/10.1140/epja/i2010-11060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-11060-7

Keywords

Navigation