Advertisement

The European Physical Journal A

, Volume 46, Issue 3, pp 345–358 | Cite as

Shell model and band structures in 19O

  • W. von Oertzen
  • M. Milin
  • T. Dorsch
  • H. G. Bohlen
  • R. Krücken
  • T. Faestermann
  • R. Hertenberger
  • Tz. Kokalova
  • M. Mahgoub
  • C. Wheldon
  • H. -F. Wirth
Regular Article - Experimental Physics

Abstract.

We have studied the reaction ( ^7Li, p) on 13C targets at E lab = 44 MeV, populating states in the oxygen isotope 19O . The experiments were performed at the Tandem Laboratory (Maier-Leibniz Laboratorium) using the high-resolution Q3D magnetic spectrometer. States were populated up to an excitation energy of 21MeV, with an overall energy resolution of 45keV. We discuss shell model states and cluster bands related to the rotational bands in the 18O -isotope, using the weak-coupling approach. Similar to 18O , the broken intrinsic reflection symmetry in these states must give rise to rotational bands as parity doublets, so two K = 3/2 bands (parities, + and - are proposed with large moments of inertia. These are discussed in terms of an underlying cluster structure, ( ^14C ⊗ n\( \alpha\)) . An extended molecular binding diagram is proposed which includes the 14C -cluster.

Keywords

Excitation Energy Shell Model Rotational Band Shell Model Calculation High Excitation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Horiuchi, K. Ikeda, Prog. Theor. Phys. Jpn. 40, 277 (1968)CrossRefADSGoogle Scholar
  2. 2.
    W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)CrossRefADSGoogle Scholar
  3. 3.
    W. von Oertzen, Z. Phys. A 357, 355 (1997)CrossRefADSGoogle Scholar
  4. 4.
    W. von Oertzen, Eur. Phys. J. A 11, 403 (2001)CrossRefADSGoogle Scholar
  5. 5.
    M. Milin et al., Eur. Phys. J. A 41, 335 (2009)CrossRefADSGoogle Scholar
  6. 6.
    W. von Oertzen et al., Eur. Phys. J. A 43, 17 (2010)CrossRefADSGoogle Scholar
  7. 7.
    W. von Oertzen, H.G. Bohlen, T. Dorsch, in preparationGoogle Scholar
  8. 8.
    T. Dorsch, PhD Thesis, Technical University München (2008)Google Scholar
  9. 9.
    C. Wheldon, Tz. Kokalova, W. von Oertzen et al., Eur. Phys. J. A 26, 321 (2005)CrossRefADSGoogle Scholar
  10. 10.
    D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995) and later additions 636CrossRefADSGoogle Scholar
  11. 11.
    T. Stammbach, S.E. Darden, P. Huber, I. Sick, Helv. Phys. Acta 40, 915 (1967)Google Scholar
  12. 12.
    H.T. Fortune, H.G. Bingham, Nucl. Phys. A 432, 197 (1977)CrossRefADSGoogle Scholar
  13. 13.
    J.B. McGrory, B.H Wildenthal, Phys. Rev. C 7, 974 (1973)CrossRefADSGoogle Scholar
  14. 14.
    E.K. Warburton, Phys. Rev. C 38, 935 (1988)CrossRefADSGoogle Scholar
  15. 15.
    C.S. Sumithrarachchi, D.W. Anthony, P.A. Lofy, D.J. Morrissey, Phys. Rev. C 74, 024322 (2006)CrossRefADSGoogle Scholar
  16. 16.
    A. Volya, V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005)CrossRefADSGoogle Scholar
  17. 17.
    A. Volya, V. Zelevinsky, Phys. Rev. C 74, 064314 (2006)CrossRefADSGoogle Scholar
  18. 18.
    M. Wiedeking et al., Phys. Rev. C 77, 054305 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Y. Nagai, M. Segawa, T. Ohsaki, H. Matsue, K. Muto, Phys. Rev. C 76, 051301(R) (2007)CrossRefADSGoogle Scholar
  20. 20.
    T. Ohsaki, M. Igashira, Y. Nagai, M. Segawa, K. Muto, Phys. Rev. C 77, 051303(R) (2008)CrossRefADSGoogle Scholar
  21. 21.
    H.G. Bohlen et al., Eur. Phys. J. A 31, 279 (2007)CrossRefADSGoogle Scholar
  22. 22.
    W.D.M. Rae, A. Etchegoyen, B.A. Brown, OXBASH, The Oxford - Buenos Aires - MSU shell model code, Technical Report 524, Michigan State University Cyclotron Laboratory (1985)Google Scholar
  23. 23.
    H.G. Bohlen et al., Phys. Rev. C 68, 054606 (2003)CrossRefADSGoogle Scholar
  24. 24.
    J. Meissner, H. Schatz, J. Görres, H. Herndl, M. Wiescher, H. Beer, F. Käppeler, Phys. Rev. C 53, 459 (1996)CrossRefADSGoogle Scholar
  25. 25.
    M.G. Pellegriti et al., Phys. Lett. B 659, 864 (2008)CrossRefADSGoogle Scholar
  26. 26.
    N. Furutachi,, arXiv:0706.0145v1 [nucl-th] (2007)
  27. 27.
    N. Furutachi, et al., Prog. Theor. Phys. Jpn. 119, 403 (2008)CrossRefADSGoogle Scholar
  28. 28.
    M. Gai et al., Phys. Rev. C 43, 2127 (1991)CrossRefADSGoogle Scholar
  29. 29.
    M. Gai et al., Phys. Rev. C 45, R2548 (1992)CrossRefADSGoogle Scholar
  30. 30.
    K. Sato, M. Tanigaki, T. Onishi et al., Nucl. Phys. A 654, Suppl. 1, 735c (1999)ADSGoogle Scholar
  31. 31.
    W. von Oertzen et al., Eur. Phys. J. A 21, 193 (2004)CrossRefADSGoogle Scholar
  32. 32.
    N. Itagaki et al., Phys. Rev. Lett. 92, 142501 (2004)CrossRefADSGoogle Scholar
  33. 33.
    H.G. Bohlen, Code SPEC (Version F), HMI Berlin, private communication (2003)Google Scholar
  34. 34.
    M. Milin, W. von Oertzen, Eur. Phys. J. A 14, 295 (2002)CrossRefADSGoogle Scholar
  35. 35.
    M. Milin, W. von Oertzen, Fizika (Zagreb) B 12, 61 (2003)ADSGoogle Scholar
  36. 36.
    R. Bansal, J.B. French, Phys. Lett. 11, 145 (1964)CrossRefADSGoogle Scholar
  37. 37.
    L. Zamick, Phys. Lett. 19, 580 (1965)CrossRefADSGoogle Scholar
  38. 38.
    H.T. Fortune, J.N. Bishop, L.R. Medsker, B.H. Wildenthal, Phys. Rev. Lett. 41, 527 (1978)CrossRefADSGoogle Scholar
  39. 39.
    H.T. Fortune, R. Sherr, Phys. Rev. C 72, 034304 (2005)CrossRefADSGoogle Scholar
  40. 40.
    A. Bohr, B.R. Mottelson, Nuclear Structure Vol. II (World Scientific, 1998)Google Scholar
  41. 41.
    W. Nazarewicz et al., Phys. Rev. Lett. 52, 1272 (1984)CrossRefADSGoogle Scholar
  42. 42.
    P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 350 (1996)CrossRefADSGoogle Scholar
  43. 43.
    P. Descouvemont, D. Baye, Phys. Rev. C 31, 2274 (1985)CrossRefADSGoogle Scholar
  44. 44.
    P.E. Koehler, H.D. Knox, D.A. Resler, R.O. Lane, G.F. Auchampaugh, Nucl. Phys. A 453, 429 (1986)CrossRefADSGoogle Scholar
  45. 45.
    S. Sen, S.E. Darden, H.R. Hiddleston, W.A. Yoh, Nucl. Phys. A 219, 429 (1974)CrossRefADSGoogle Scholar
  46. 46.
    R. Moreh, Nucl. Phys. 70, 293 (1965)CrossRefGoogle Scholar
  47. 47.
    J.L. Wiza, R. Middleton, Phys. Rev. 143, 676 (1966)CrossRefADSGoogle Scholar
  48. 48.
    D.J. Crozier, H.T. Fortune, R. Middleton, J.L. Wiza, Phys. Rev. C 11, 393 (1975)CrossRefADSGoogle Scholar
  49. 49.
    J.L. Wiza, H.G. Bingham, H.T. Fortune, Phys. Rev. C 7, 2175 (1973)CrossRefADSGoogle Scholar
  50. 50.
    H.T. Fortune, H.G. Bingham, Phys. Rev. C 10, 2174 (1974)CrossRefADSGoogle Scholar
  51. 51.
    H.T. Fortune, H.G. Bingham, Nucl. Phys. A 293, 197 (1977)CrossRefADSGoogle Scholar
  52. 52.
    J.C. Armstrong, K.S. Quisenberry, Phys. Rev. 122, 1508 (1961)CrossRefADSGoogle Scholar
  53. 53.
    M. Yasue et al., Phys. Rev. C 46, 1242 (1992)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • W. von Oertzen
    • 1
  • M. Milin
    • 2
  • T. Dorsch
    • 1
    • 3
  • H. G. Bohlen
    • 1
  • R. Krücken
    • 3
  • T. Faestermann
    • 3
  • R. Hertenberger
    • 4
  • Tz. Kokalova
    • 1
  • M. Mahgoub
    • 3
  • C. Wheldon
    • 1
  • H. -F. Wirth
    • 3
    • 4
  1. 1.Helmholtz-Zentrum BerlinBerlinGermany
  2. 2.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Technische Universität MünchenGarchingGermany
  4. 4.Sektion Physik der Universität MünchenGarchingGermany

Personalised recommendations