Advertisement

The European Physical Journal A

, Volume 44, Issue 3, pp 487–497 | Cite as

Energy-time correlation of slowing-down neutrons

  • S. P. Chabod
Special Article - Tools for Experiment and Theory

Abstract

We formulate the energy-time correlation of neutrons slowing down through multiple elastic scatterings in a homogeneous infinite medium. From the correlation result, we obtain the neutron thermalisation time, expressed through special functions appearing in the calculation steps. We validate our theoretical approach by comparing the ensuing formulae with results of Monte Carlo calculations.

Keywords

Neutron Energy Monte Carlo Calculation Thermalisation Time Monte Carlo Approach Incident Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Krane, Introductory Nuclear Physics (J. Wiley & Sons Inc., 1987) pp. 408--413Google Scholar
  2. 2.
    A.A. Bergman, A neutron spectrometer based on measuring the slowing-down time of neutrons in lead, in Proceedings of the First International Conference on Peaceful Uses of Atomic Energy, Geneva, Vol. 4 (US Atomic Energy Commission, United Nations, New York, 1956) p. 135Google Scholar
  3. 3.
    A. Abánades et al., Nucl. Instrum. Methods A 478, 577 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Y. Danon et al., Nucl. Instrum. Methods B 261, 953 (2007)CrossRefADSGoogle Scholar
  5. 5.
    T. Granier et al., Nucl. Instrum. Methods A 506, 149 (2003)CrossRefADSGoogle Scholar
  6. 6.
    R. Pourimani et al., Nucl. Instrum. Methods A 488, 226 (2002)CrossRefADSGoogle Scholar
  7. 7.
    D. Rochman et al., Nucl. Instrum. Methods A 564, 400 (2006)CrossRefADSGoogle Scholar
  8. 8.
    D. Rochman et al., Nucl. Instrum. Methods A 550, 397 (2005)CrossRefADSGoogle Scholar
  9. 9.
    A.A. Bergman et al., Sov. Phys. JETP 6, 6 (1958)ADSGoogle Scholar
  10. 10.
    N. Thiollière, Neutron elastic scattering cross-section measurement on carbon and fluorine in epithermal energy range using PEREN platform, PhD Thesis, Université Joseph Fourier, 2005 (in French)Google Scholar
  11. 11.
    A.I. Hawari et al., Nucl. Instrum. Methods A 422, 846 (1999)CrossRefADSGoogle Scholar
  12. 12.
    R. Barjon, Physique des réacteurs nucléaires (Institut des Sciences Nucléaires, 1993) pp. 77--78Google Scholar
  13. 13.
    R. Moreh et al., Phys. Rev. B 56, 187 (1997)CrossRefADSGoogle Scholar
  14. 14.
    P. Debye, Ann. Phys. (Leipzig) 39, 789 (1912)ADSGoogle Scholar
  15. 15.
    I.G. Dyad’kin, E.P. Batalina, At. Energ. 10, 5 (1961)Google Scholar
  16. 16.
    M. Sawan, R.W. Conn, Nucl. Sci. Eng. 54, 127 (1974)Google Scholar
  17. 17.
    T.J. Williamson, R.W. Albrecht, Nucl. Sci. Eng. 42, 97 (1970)Google Scholar
  18. 18.
    D.G. Cacuci, Nucl. Sci. Eng. 108, 50 (1991)Google Scholar
  19. 19.
    Fermi age theory, described in K.H. Beckurts, K. Wirtz, Neutron Physics (Springer Verlag, 1964) p. 145 and in R. Barjon, Physique des réacteurs nucléaires (Institut des Sciences Nucléaires, 1993) p. 191Google Scholar
  20. 20.
    E. Belle, Characterization of spallation neutron transport in a large lead volume - Differential flux and transmutation rate measurements, PhD Thesis, Université Joseph Fourier, 1998 (in French)Google Scholar
  21. 21.
    G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958)MATHCrossRefGoogle Scholar
  22. 22.
    P. Reuss Neutron Physics (EDP Sciences, 2008) p. 259CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut Polytechnique de GrenobleLPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3GrenobleFrance

Personalised recommendations