Advertisement

The European Physical Journal A

, Volume 44, Issue 1, pp 119–124 | Cite as

Spin symmetry in Dirac negative-energy spectrum in density-dependent relativistic Hartree-Fock theory

  • Haozhao Liang
  • Wen Hui Long
  • Jie Meng
  • Nguyen Van Giai
Regular Article - Theoretical Physics

Abstract

The spin symmetry in the Dirac negative-energy spectrum and its origin are investigated for the first time within the density-dependent relativistic Hartree-Fock (DDRHF) theory. Taking the nucleus 16O as an example, the spin symmetry in the negative-energy spectrum is found to be a good approximation and the dominant components of the Dirac wave functions for the spin doublets are nearly identical. In comparison with the relativistic Hartree approximation where the origin of spin symmetry lies in the equality of the scalar and vector potentials, in DDRHF the cancellation between the Hartree and Fock terms is responsible for the better spin symmetry properties and determines the subtle spin-orbit splitting. These conclusions hold even in the case when significant deviations from the G -parity values of the meson-antinucleon couplings occur.

Keywords

Spin Symmetry Spin Doublet Orbit Potential Dirac Wave Function Spin Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  2. 2.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)CrossRefADSGoogle Scholar
  3. 3.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)CrossRefADSGoogle Scholar
  5. 5.
    A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)CrossRefADSGoogle Scholar
  6. 6.
    K. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)CrossRefADSGoogle Scholar
  7. 7.
    A. Bohr, I. Hamamoto, B.R. Mottelson, Phys. Scr. 26, 273 (1982)CrossRefADSGoogle Scholar
  8. 8.
    C. Bahri, J.P. Draayer, S.A. Moszkowski, Phys. Rev. Lett. 68, 2133 (1992)CrossRefADSGoogle Scholar
  9. 9.
    J.N. Ginocchio, Phys. Rep. 414, 165 (2005)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)CrossRefADSGoogle Scholar
  11. 11.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)CrossRefADSGoogle Scholar
  12. 12.
    S. Marcos, L.N. Savushkin, M. López-Quelle, P. Ring, Phys. Rev. C 62, 054309 (2000)CrossRefADSGoogle Scholar
  13. 13.
    S. Marcos, M. López-Quelle, R. Niembro, L.N. Savushkin, P. Bernardos, Phys. Lett. B 513, 30 (2001)CrossRefADSGoogle Scholar
  14. 14.
    T.S. Chen, H.-F. Lü, J. Meng, S.Q. Zhang, S.-G. Zhou, Chin. Phys. Lett. 20, 358 (2003)CrossRefADSGoogle Scholar
  15. 15.
    S.-G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003)CrossRefADSGoogle Scholar
  16. 16.
    X.T. He, S.-G. Zhou, J. Meng, E.G. Zhao, W. Scheid, Eur. Phys. J. A 28, 265 (2006)CrossRefADSGoogle Scholar
  17. 17.
    A. Bouyssy, S. Marcos, J.F. Mathiot, N. Van Giai, Phys. Rev. Lett. 55, 1731 (1985)CrossRefADSGoogle Scholar
  18. 18.
    A. Bouyssy, J.F. Mathiot, N. Van Giai, S. Marcos, Phys. Rev. C 36, 380 (1987)CrossRefADSGoogle Scholar
  19. 19.
    P. Bernardos et al., Phys. Rev. C 48, 2665 (1993)CrossRefADSGoogle Scholar
  20. 20.
    S. Marcos, L.N. Savushkin, V.N. Fomenko, M. López-Quelle, R. Niembro, J. Phys. G: Nucl. Part. Phys. 30, 703 (2004)CrossRefADSGoogle Scholar
  21. 21.
    W.H. Long, N. Van Giai, J. Meng, Phys. Lett. B 640, 150 (2006)ADSGoogle Scholar
  22. 22.
    W.H. Long, H. Sagawa, J. Meng, N. Van Giai, EPL 82, 12001 (2008)CrossRefGoogle Scholar
  23. 23.
    W.H. Long, H. Sagawa, N. Van Giai, J. Meng, Phys. Rev. C 76, 034314 (2007)CrossRefADSGoogle Scholar
  24. 24.
    M. López-Quelle, L.N. Savushkin, S. Marcos, P. Bernardos, R. Niembro, Nucl. Phys. A 727, 269 (2003)CrossRefADSGoogle Scholar
  25. 25.
    W.H. Long, H. Sagawa, J. Meng, N. Van Giai, Phys. Lett. B 639, 242 (2006)CrossRefADSGoogle Scholar
  26. 26.
    A. Leviatan, J.N. Ginocchio, Phys. Lett. B 518, 214 (2001)CrossRefADSGoogle Scholar
  27. 27.
    J. Meng, Nucl. Phys. A 635, 3 (1998)CrossRefADSGoogle Scholar
  28. 28.
    I.N. Mishustin, L.M. Satarov, T.J. Bürvenich, H. Stöcker, W. Greiner, Phys. Rev. C 71, 035201 (2005)CrossRefADSGoogle Scholar
  29. 29.
    E. Friedman, A. Gal, J. Mareš, Nucl. Phys. A 761, 283 (2005)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haozhao Liang
    • 1
    • 2
  • Wen Hui Long
    • 1
    • 3
  • Jie Meng
    • 1
    • 4
    • 5
  • Nguyen Van Giai
    • 2
  1. 1.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina
  2. 2.Institut de Physique NucléaireIN2P3-CNRS and Université Paris-SudOrsay CedexFrance
  3. 3.Physik-Department der Technischen Universität MünchenGarchingGermany
  4. 4.School of Physics and Nuclear EnergyBeihang UniversityBeijingChina
  5. 5.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations