Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

Regular Article - Theoretical Physics


We undertake a systematic calculation on electric-dipole responses of even-even nuclei for a wide mass region employing a fully self-consistent Hartree-Fock plus RPA approach. For an easy implementation of the fully self-consistent calculation, the finite-amplitude method which we have proposed recently is employed. We calculated dipole responses in Cartesian mesh representation, which can deal with deformed nuclei but do not include pairing correlation. The systematic calculation has reached Nickel isotopes. The calculated results show reasonable agreement for heavy nuclei while the average excitation energies are underestimated for light nuclei. We show a systematic comparison of the splitting of the peak energy with the ground-state deformation.


Giant Dipole Resonance Skyrme Interaction Average Excitation Energy TDHF Calculation Nuclear Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tapas Sil, S. Shlomo, B.K. Agrawal, P.-G. Reinhard, Phys. Rev. C 73, 034316 (2006).CrossRefADSGoogle Scholar
  2. 2.
    J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, 034310 (2005).CrossRefADSGoogle Scholar
  3. 3.
    S. Peru, J.F. Berger, P.F. Bortignon, Eur. Phys. J. A 26, 25 (2005).CrossRefADSGoogle Scholar
  4. 4.
    D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Nucl. Phys. A 692, 496 (2001); Phys. Rev. C 63, 047301 (2001).CrossRefADSGoogle Scholar
  5. 5.
    N. Paar, P. Papakonstantinou, V.Yu. Ponomarev, J. Wambach, Phys. Lett. B 624, 195 (2005).CrossRefADSGoogle Scholar
  6. 6.
    J. Piekarewicz, Phys. Rev. C 73, 044325 (2006).CrossRefADSGoogle Scholar
  7. 7.
    N. Paar, P. Ring, T. Niksic, D. Vretenar, Phys. Rev. C 67, 034312 (2003); N. Paar, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 69, 054303 (2004); Phys. Lett. B 606, 288 (2005); N. Paar, D. Vretenar, P. Ring, Phys. Rev. Lett. 94, 182501 (2005).CrossRefADSGoogle Scholar
  8. 8.
    Kenichi Ysohida, Nguyen Van Giai, Phys. Rev. C 78, 064316 (2008).CrossRefADSGoogle Scholar
  9. 9.
    S. Peru, H. Goutte, Phys. Rev. C 77, 044313 (2008).CrossRefADSGoogle Scholar
  10. 10.
    Daniel Pena Arteaga, P. Ring, Phys. Rev. C 77, 034317 (2008).CrossRefADSGoogle Scholar
  11. 11.
    B. Sabbey, M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 75, 044305 (2007).CrossRefADSGoogle Scholar
  12. 12.
    G.F. Bertsch, M. Girod, S. Hilaire, J.-P. Delaroche, H. Goutte, S. Peru, Phys. Rev. Lett. 99, 032502 (2007).CrossRefADSGoogle Scholar
  13. 13.
    J. Terasaki, J. Engel, Phys. Rev. C 74, 044301 (2006).CrossRefADSGoogle Scholar
  14. 14.
    J. Terasaki, J. Engel, Phys. Rev. C 78, 044311 (2008).CrossRefADSGoogle Scholar
  15. 15.
    Takashi Nakatsukasa, Tsunenori Inakura, Kazuhiro Yabana, Phys. Rev. C 76, 024318 (2007).CrossRefADSGoogle Scholar
  16. 16.
    T. Inakura, H. Imagawa, Y. Hashimoto, S. Mizutori, M. Yamagami, K. Matsuyanagi, Nucl. Phys. A 768, 61 (2006).CrossRefADSGoogle Scholar
  17. 17.
    Takashi Nakatsukasa, Kazuhiro Yabana, Phys. Rev. C 71, 024301 (2005).CrossRefADSGoogle Scholar
  18. 18.
    Centre for photonuclear experimental data, Russia (
  19. 19.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (W.A. Benjamin, New York, 1975).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for PhysicsUniversity of TsukubaTsukubaJapan
  2. 2.Theoretical Nuclear Physics LaboratoryRIKEN Nishina CenterWakoJapan
  3. 3.Center for Computational SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations