Advertisement

Precision Penning trap mass measurements of rare isotopes produced by projectile fragmentation

  • S. Schwarz
  • M. Block
  • G. Bollen
  • C. M. Campbell
  • M. Facina
  • R. Ferrer
  • C. M. Folden III
  • A. A. Kwiatkowski
  • D. J. Morrissey
  • G. K. Pang
  • A. M. Prinke
  • R. J. Ringle
  • J. Savory
  • P. H. Schury
Regular Article - Experimental Physics

Abstract

The low-energy beam and ion trap facility LEBIT at NSCL/MSU is at present the only facility where precision experiments are performed with stopped rare isotope beams produced by fast-beam fragmentation. LEBIT combines high-pressure-gas stopping with advanced ion manipulation techniques to provide brilliant low-energy beams. So far these beams have mainly been used for mass measurements on short-lived rare isotopes with a 9.4T Penning trap mass spectrometer. Recent examples include 70m Br , located at the proton dripline, 32Si and the iron isotopes 63-65Fe . While the measurement of 32Si helps to solve a long-standing dispute over the validity of the isobaric multiplet mass equation (IMME) for the A = 32 , T = 2 multiplet, the mass measurements of 65m,g Fe marked the first time a nuclear isomeric state has been discovered by Penning trap mass spectrometry.

Keywords

Mass Measurement Iron Isotope Rare Isotope Linear Paul Trap Rare Isotope Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Weick et al., Nucl. Instrum. Methods B 164, 168 (2000).CrossRefADSGoogle Scholar
  2. 2.
    M. Facina et al., Hyperfine Interact. 174, 21 (2007).CrossRefADSGoogle Scholar
  3. 3.
    D. Morrissey et al., Nucl. Instrum. Methods B 266, 4822 (2008).CrossRefADSGoogle Scholar
  4. 4.
    S. Schwarz et al., Nucl. Instrum. Methods B 204, 474 (2003).CrossRefADSGoogle Scholar
  5. 5.
    T. Sun et al., Eur. Phys. J. A 25, s01, 61 (2005).CrossRefGoogle Scholar
  6. 6.
    P. Schury et al., Hyperfine Interact. 173, 165 (2006).Google Scholar
  7. 7.
    R. Ringle et al., Eur. Phys. J. A 25, s01, 59 (2005).CrossRefGoogle Scholar
  8. 8.
    R. Ringle et al., Nucl. Instrum. Methods A 604, 536 (2009).CrossRefADSGoogle Scholar
  9. 9.
    G. Bollen et al., J. Mod. Opt. 39, 257 (1992).CrossRefADSGoogle Scholar
  10. 10.
    M. König et al., Int. J. Mass Spectrom. Ion. Process. 142, 95 (1995).CrossRefGoogle Scholar
  11. 11.
    R. Ringle et al., Int. J. Mass Spectrom. 263, 38 (2007).CrossRefADSGoogle Scholar
  12. 12.
    R. Ringle et al., Int. J. Mass Spectrom. 262, 33 (2007).CrossRefADSGoogle Scholar
  13. 13.
    S. Eliseev et al., Int. J. Mass Spectrom. 262, 45 (2007).CrossRefADSGoogle Scholar
  14. 14.
    G. Bollen et al., Phys. Rev. Lett. 96, 152501 (2006).CrossRefADSGoogle Scholar
  15. 15.
    R. Ringle et al., Phys. Rev. C 75, 055503 (2007).CrossRefADSGoogle Scholar
  16. 16.
    P. Schury et al., Phys. Rev. C 75, 055801 (2007).CrossRefADSGoogle Scholar
  17. 17.
    G. Bollen et al., Eur. Phys. J. ST 150, 337 (2007).ADSGoogle Scholar
  18. 18.
    J. Savory et al., Phys. Rev. Lett. 102, 132501 (2009).CrossRefADSGoogle Scholar
  19. 19.
    J. Savory et al., Improved mass measurements of nuclei around N = Z = 34 for X-ray burst models, in Proceedings of the 10th Symposium on Nuclei in the Cosmos, PoS(NIC X)177.Google Scholar
  20. 20.
    A. Wapstra et al., Nucl. Phys. A 729, 129 (2003).CrossRefADSGoogle Scholar
  21. 21.
    B. Brown et al., Phys. Rev. C 65, 045802 (2002).CrossRefADSGoogle Scholar
  22. 22.
    M. Block et al., Phys. Rev. Lett. 100, 132501 (2008).CrossRefADSGoogle Scholar
  23. 23.
    K. Blaum et al., Phys. Rev. Lett. 91, 260801 (2003).CrossRefADSGoogle Scholar
  24. 24.
    S. Triambak et al., Phys. Rev. C 73, 054313 (2006).CrossRefADSGoogle Scholar
  25. 25.
    W. Shi et al., Phys. Rev. A 72, 022510 (2005).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Schwarz
    • 1
  • M. Block
    • 2
  • G. Bollen
    • 1
    • 3
  • C. M. Campbell
    • 1
  • M. Facina
    • 1
  • R. Ferrer
    • 1
  • C. M. Folden III
    • 1
  • A. A. Kwiatkowski
    • 1
    • 3
  • D. J. Morrissey
    • 1
    • 4
  • G. K. Pang
    • 1
    • 4
  • A. M. Prinke
    • 1
    • 3
  • R. J. Ringle
    • 5
  • J. Savory
    • 1
    • 3
  • P. H. Schury
    • 6
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.GSIDarmstadtGermany
  3. 3.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  4. 4.Department of ChemistryMichigan State UniversityEast LansingUSA
  5. 5.TRIUMFVancouverCanada
  6. 6.Atomic Physics Laboratory, RIKENWako, SaitamaJapan

Personalised recommendations