The European Physical Journal A

, Volume 39, Issue 2, pp 145–148 | Cite as

A new energy-dependent quark interaction from a Tamm-Dancoff reduction of an effective field theory quark model

  • M. De Sanctis
  • P. Quintero
Open Access


A new quark interaction is derived, by means of a Tamm-Dancoff reduction, from an effective field theory constituent quark model. In contrast to the standard Coulombic potential, the obtained interaction is nonlocal and energy dependent. Furthermore, it becomes positive and rises up to a maximum value when the interquark distance increases, partially resembling some aspects of the phenomenological Cornell potential.


03.65.Pm Relativistic wave equations 12.39.Ki Relativistic quark model 


  1. 1.
    V.B. Berestetskii, L.P. Pitaevskii, E.M. Lifshitz, Quantum Electrodynamics, Vol. 4, second edition (Elsevier, Butterworth Heinemann, Oxford, 1982) p. 336.Google Scholar
  2. 2.
    E. Eichten, Phys. Rev. Lett. 34, 369 (1975)Google Scholar
  3. 3.
    A. Barchielli, N. Brambilla, G.M. Prosperi, Nuovo Cimento A 103, 59 (1990)Google Scholar
  4. 4.
    P. Hasenfratz, R.R. Horgan, J. Kuti, J.M. Richard, Phys. Lett. B 94, 401 (1980)Google Scholar
  5. 5.
    M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995)Google Scholar
  6. 6.
    C. Bernard, Phys. Rev. D 62, 034503 (2000)Google Scholar
  7. 7.
    R. Alkofer, J. Greensite, J. Phys. G: Nucl. Part. Phys. 34, S3 (2007) arXiv:hep-ph/0610365.Google Scholar
  8. 8.
    M. De Sanctis, Eur. Phys J. A 33, 71 (2007)Google Scholar
  9. 9.
    I. Tamm, J. Phys. 9, 449 (1945)Google Scholar
  10. 10.
    R.J. Lombard, J. Mares, C. Volpe, Description of heavy quark systems by means of energy dependent potentials, preprint arXiv:hep-ph/0411067v1.Google Scholar
  11. 11.
    M. Rosa-Clot, M. Testa, Phys. Rev. C 23, 2730 (1981).Google Scholar
  12. 12.
    M. Järvinen, Hydrogen atom in relativistic motion, preprint arXiv:hep-ph/0411208v2.Google Scholar
  13. 13.
    M. De Sanctis, D. Prosperi, Nuovo Cimento A 107, 611 (1994).Google Scholar
  14. 14.
    J. Formánek, V. Holesovickách, R.J. Lombard, J. Mares, Wave equations with energy dependent potentials, preprint arXiv:quant-ph/0309157v1.Google Scholar
  15. 15.
    I.S. Gradshteyn, I.M. Ryzhik Table of Integrals, Series, and Products (Academic Press, New York, 1980) eqs. (3.722.5), (8.230.1), (8.232.1).Google Scholar

Copyright information

© The Author(s) 2009

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Nacional de ColombiaBogotá D. C.Colombia

Personalised recommendations