The European Physical Journal A

, Volume 39, Issue 1, pp 125–131 | Cite as

Intermediate energy elastic scattering of protons on 24Mg in the \( \alpha\) -cluster model with dispersion

  • Yu. A. Berezhnoy
  • V. P. Mikhailyuk
  • V. V. Pilipenko
Regular Article - Theoretical Physics


The \( \alpha\) -cluster model with dispersion has been developed for the case of the 24Mg nucleus. The 24Mg nucleus is considered as composed of the core ( 16O nucleus) and two \( \alpha\) -clusters that form a dumbbell configuration and are arranged with the most probability inside the core. In the calculations the \( \alpha\) -cluster structure of the core has been taken into account. On the basis of the multiple diffraction scattering theory the differential cross-section and the polarization observables for the elastic p - 24Mg scattering at 800 and 250MeV have been calculated. The results obtained are in agreement with the existing experimental data.


24.10.Ht Optical and diffraction models 25.45.De Elastic and inelastic scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).Google Scholar
  2. 2.
    A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001).Google Scholar
  3. 3.
    G.D. Alkhazov, S.L. Belostotsky, A.A. Vorobyov, Phys. Rep. C 42, 89 (1978).Google Scholar
  4. 4.
    K.W. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Braunschweig, Vieweg, 1977).Google Scholar
  5. 5.
    F.S. Levin, Nucl. Phys. A 463, 487c (1987).Google Scholar
  6. 6.
    Y. Suzuki, M. Takahashi, R.G. Lovas, K. Varga, Nucl. Phys. A 706, 123 (2002).Google Scholar
  7. 7.
    P.S. Hauge, S.A. Williams, G.H. Duffey, Phys. Rev. C 4, 1044 (1971).Google Scholar
  8. 8.
    W. Greiner, J. Park, W. Scheid, in Nuclear Molecules (World Scientific, 1995).Google Scholar
  9. 9.
    Yu.A. Berezhnoy, V.V. Pilipenko, G.A. Khomenko, J. Phys. G 10, 63 (1984).Google Scholar
  10. 10.
    Yu.A. Berezhnoy, V.P. Mikhailyuk, V.V. Pilipenko, J. Phys. G 18, 85 (1992).Google Scholar
  11. 11.
    Yu.A. Berezhnoy, V.P. Mikhailyuk, Int. J. Mod. Phys. E 8, 485 (1999).Google Scholar
  12. 12.
    Yu.A. Berezhnoy, V.P. Mikhailyuk, Bull. Rus. Acad. Sci. Phys. 65, 776 (2001).Google Scholar
  13. 13.
    Yu.A. Berezhnoy, V.P. Mikhailyuk, Phys. Part. Nucl. 39, 221 (2008).Google Scholar
  14. 14.
    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).Google Scholar
  15. 15.
    K. Katō, H. Kazama, H. Tanaka, Prog. Theor. Phys. 76, 75 (1986).Google Scholar
  16. 16.
    P. Descouvemont, D. Baye Nucl. Phys. A 475, 219 (1987).Google Scholar
  17. 17.
    P. Descouvemont, Nucl. Phys. A 709, 275 (2002).Google Scholar
  18. 18.
    G.C. Li, M.R. Yearian, I. Sick, Phys. Rev. C 9, 1861 (1974).Google Scholar
  19. 19.
    H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).Google Scholar
  20. 20.
    S.E. Massen, Phys. Rev. C 67, 014314 (2003).Google Scholar
  21. 21.
    R.J. Glauber, in Lectures in Theoretical Physics, Vol. 1, edited by W.E. Brittin, L.G. Dunham (Interscience, New York, 1959) p. 315.Google Scholar
  22. 22.
    P. Osland, R.J. Glauber, Nucl. Phys. A 326, 225 (1979).Google Scholar
  23. 23.
    G.A. Moss, L.G. Greeniaus, J.M. Cameron, D.A. Hutcheon, R.L. Liljestrand, C.A. Miller, G. Roy, B.K.S. Koene, W.T.H. van Oers, A.W. Stetz, A. Willis, N. Willis, Phys. Rev. C 21, 1932 (1980).Google Scholar
  24. 24.
    H. Courant, K. Einsweiler, T. Joyce, H. Kagan, Y.I. Makadisi, M.L. Marshak, B. Mossberg, E.A. Peterson, K. Ruddick, T. Walsh, G.J. Igo, R. Talaga, A. Wriekat, R. Klem, Phys. Rev. C 19, 104 (1979).Google Scholar
  25. 25.
    G.A. Moss, C.A. Davis, J.M. Greben, L.G. Greeniaus, G. Roy, J. Uegaki, R. Abegg, D.A. Hutcheon, C.A. Miller, W.T.H. Van Oers, Nucl. Phys. A 392, 361 (1983).Google Scholar
  26. 26.
    G.S. Blanpied, N.M. Hintz, G.S. Kyle, M.A. Franey, S.J. Seestrom-Morris, R.K. Owen, J.W. Palm, D. Dehnhard, M.L. Barlett, C.J. Harvey, G.W. Hoffmann, J.A. McGill, R.P. Liljestrand, L. Ray, Phys. Rev. C 25, 422 (1982).Google Scholar
  27. 27.
    G.S. Blanpied, B.G. Ritchie, M.L. Barlett, G.W. Hoffmann, J.A. McGill, E.C. Milner, K.W. Jones, S.K. Nanda, R. de Swiniarski, Phys. Rev. C 37, 1987 (1988).Google Scholar
  28. 28.
    R.W. Fergerson, M.L. Barlett, G.W. Hoffmann, J.A. Marshall, E.C. Milner, G. Pauletta, L. Ray, J.F. Amann, K.W. Jones, J.B. McClelland, M. Gazzaly, G.J. Igo, Phys. Rev. C 33, 239 (1986).Google Scholar
  29. 29.
    S. Shim, M.W. Kim, B.C. Clark, L. Kurth Kerr, Phys. Rev. C 59, 317 (1999).Google Scholar
  30. 30.
    K.H. Hicks, R.G. Jeppesen, C.C.K. Lin, R. Abegg, K.P. Jackson, O. Hausser, J. Lisantti, C.A. Miller, E. Rost, R. Sawafta, M.C. Vetterli, S. Yen, Phys. Rev. C 38, 229 (1988).Google Scholar
  31. 31.
    Yu.A. Berezhnoy, V.P. Mikhailyuk, V.V. Pilipenko, Acta Phys. Pol. B 22, 873 (1991).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yu. A. Berezhnoy
    • 1
  • V. P. Mikhailyuk
    • 2
  • V. V. Pilipenko
    • 3
  1. 1.Karazin Kharkov National UniversityKharkovUkraine
  2. 2.Institute for Nuclear ResearchKievUkraine
  3. 3.National Science Center “Kharkov Institute of Physics and Technology”KharkovUkraine

Personalised recommendations