Advertisement

The European Physical Journal A

, Volume 39, Issue 1, pp 107–116 | Cite as

Electric and magnetic response to the continuum for A = 7 isobars in a dicluster model

  • A. Mason
  • R. Chatterjee
  • L. Fortunato
  • A. Vitturi
Regular Article - Theoretical Physics

Abstract

The mirror isobars 7Li and 7Be are investigated in a dicluster model. The magnetic dipole moments and the magnetic dipole response to the continuum are calculated in this framework. The magnetic contribution is found to be small with respect to electric dipole and quadrupole excitations even at astrophysical energies, at a variance with the case of the deuteron. Energy-weighted molecular sum rules are evaluated and a formula for the molecular magnetic dipole sum rule is found which matches the numerical calculations. Cross-sections for photo-dissociation and radiative capture as well as the S -factor for reactions of astrophysical significance are calculated with good agreement with known experimental data.

PACS

21.60.Gx Cluster models 23.20.Js Multipole matrix elements 25.60.Tv Radiative capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Walliser, T. Fliessbach, Phys. Rev. C 31, 2242 (1985).Google Scholar
  2. 2.
    K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977).Google Scholar
  3. 3.
    B. Buck, R.A. Baldock, J. Alberto-Rubio, J. Phys. G: Nucl. Phys. 11, L11 (1985).Google Scholar
  4. 4.
    T. Kajino, A. Arima, Phys. Rev. Lett. 52, 739 (1984).Google Scholar
  5. 5.
    T. Kajino, Nucl. Phys. A 460, 559 (1986).Google Scholar
  6. 6.
    T. Kajino, Phys. Rev. C 37, 512 (1988).Google Scholar
  7. 7.
    T. Altmeyer, Z. Phys. A 330, 277 (1988).Google Scholar
  8. 8.
    K. Langanke, Nucl. Phys. A 457, 351 (1986).Google Scholar
  9. 9.
    L. Fortunato, A. Vitturi, Eur. Phys. J. A 26, 33 (2005).Google Scholar
  10. 10.
    K. Nollett, Phys. Rev. C 63, 054002 (2001).Google Scholar
  11. 11.
    L. Canton, L.G. Levchuk, arXiv:0805.2667v2 [nucl-th].Google Scholar
  12. 12.
    Gy. Gyürky, Phys. Rev. C 75, 035805 (2007)Google Scholar
  13. 13.
    D. Kurath, Phys. Rev. 130, 1525 (1963).Google Scholar
  14. 14.
    M. Traini, Phys. Rev. Lett. 41, 1535 (1978).Google Scholar
  15. 15.
    I. Tanihata, Phys. Rev. Lett. 55, 2676 (1985).Google Scholar
  16. 16.
    H. Walliser, Q.K.K. Liu, Y.C. Tang, Phys. Rev. C 28, 57 (1983).Google Scholar
  17. 17.
    X. Hu, D.R. Tilley, J.H. Kelley, J.L. Godwin, Nucl. Phys. A 708, 3 (2002) and corrections in D.R. Tilley, TUNL manuscript.Google Scholar
  18. 18.
    S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005)Google Scholar
  19. 19.
    F. Catara, C.H. Dasso, A. Vitturi, Nucl. Phys. A 602, 181 (1996).Google Scholar
  20. 20.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons, Inc., 1952).Google Scholar
  21. 21.
    A. De Shalit, I. Talmi, Nuclear Shell Theory (Academic Press, New York and London, 1963).Google Scholar
  22. 22.
    F. Ajzenberg-Selove, Nucl. Phys. A 413, 1 (1984).Google Scholar
  23. 23.
    D. Krolle, Z. Phys. A 328, 291 (1987).Google Scholar
  24. 24.
    A. Bohr, B.R. Mottelson, Nuclear Structure (W.A. Benjamin, Inc., New York, Amsterdam, 1969).Google Scholar
  25. 25.
    Y. Alhassid, M. Gai, G.F. Bertsch, Phys. Rev. Lett. 49, 1482 (1982).Google Scholar
  26. 26.
    H.J. Assenbaum, K. Langanke, A. Weiguny, Phys. Rev. C 35, 755 (1987).Google Scholar
  27. 27.
    C.A. Bertulani, A. Sustich, Phys. Rev. C 46, 2340 (1992).Google Scholar
  28. 28.
    M.A. Nagarajan, S.M. Lenzi, A. Vitturi, Eur. Phys. J. A 24, 63 (2005).Google Scholar
  29. 29.
    NACRE database, http://pntpm.ulb.ac.be/Nacre/ nacre\_d.htm.Google Scholar
  30. 30.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chigaco Press, 1988).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Mason
    • 1
  • R. Chatterjee
    • 1
  • L. Fortunato
    • 1
  • A. Vitturi
    • 1
  1. 1.Dipartimento di Fisica “G. Galilei”Università di Padova and INFNPadovaItaly

Personalised recommendations