The European Physical Journal A

, Volume 38, Issue 3, pp 317–330 | Cite as

Constituent gluon interpretation of glueballs and gluelumps

Regular Article - Theoretical Physics

Abstract

Arguments are given that support the interpretation of the lattice QCD glueball and gluelump spectra in terms of bound states of massless constituent gluons with helicity 1. In this scheme, we show that the mass hierarchy of the currently known gluelumps and glueballs is mainly due to the number of constituent gluons and can be understood within a simple flux tube model. It is also argued that the lattice QCD 0+- glueball should be seen as a four-gluon bound state. We finally predict the mass of the 0- state, not yet computed in lattice QCD.

PACS

12.39.Mk Glueball and nonstandard multi-quark/gluon states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007) [arXiv: 0708.4016] and references therein.Google Scholar
  2. 2.
    C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999) [hep-lat/9901004].Google Scholar
  3. 3.
    H.B. Meyer, M.J. Teper, Phys. Lett. B 605, 344 (2005) [hep-ph/0409183].Google Scholar
  4. 4.
    Y. Chen, Phys. Rev. D 73, 014516 (2006) [hep-lat/0510074].Google Scholar
  5. 5.
    H.B. Meyer, arXiv:0808.3151.Google Scholar
  6. 6.
    A.P. Szczepaniak, E.S. Swanson, Phys. Lett. B 577, 61 (2003) [hep-ph/0308268].Google Scholar
  7. 7.
    T. Barnes, Z. Phys. C 10, 275 (1981)Google Scholar
  8. 8.
    J.M. Cornwall, A. Soni, Phys. Lett. B 120, 431 (1983).Google Scholar
  9. 9.
    F. Brau, C. Semay, Phys. Rev. D 70, 014017 (2004) [hep-ph/0412173].Google Scholar
  10. 10.
    V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 74, 054002 (2006) [hep-ph/0605205].Google Scholar
  11. 11.
    V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 77, 094009 (2008) [arXiv:0803.0815].Google Scholar
  12. 12.
    V. Mathieu, F. Buisseret, C. Semay, Phys. Rev. D 77, 114022 (2008) [arXiv:0802.0088].Google Scholar
  13. 13.
    M. Foster, C. Michael, Phys. Rev. D 59, 094509 (1999) [hep-lat/9811010].Google Scholar
  14. 14.
    G.S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130].Google Scholar
  15. 15.
    An complete review and many references about baryons in large-N c QCD can be found in N. Matagne, PhD Thesis, University of Liège, 2006 [hep-ph/0701061].Google Scholar
  16. 16.
    E. Witten, Nucl. Phys. B 160, 57 (1979).Google Scholar
  17. 17.
    C. Semay, F. Buisseret, N. Matagne, Fl. Stancu, Phys. Rev. D 75, 096001 (2007) [hep-ph/0702075]Google Scholar
  18. 18.
    C. Liu, Eur. Phys. J. C 53, 413 (2008) [arXiv:0710.4185].Google Scholar
  19. 19.
    A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65, 025012 (2002) [hep-ph/0107078].Google Scholar
  20. 20.
    A.P. Szczepaniak, E.S. Swanson, Phys. Rev. Lett. 87, 072001 (2001) [hep-ph/0006306].Google Scholar
  21. 21.
    A. Szczepaniak, E.S. Swanson, C.R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996) [hep-ph/9511422]Google Scholar
  22. 22.
    F.J. Llanes-Estrada, P. Bicudo, S.R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006) [hep-ph/0507205].Google Scholar
  23. 23.
    T. Barnes, Z. Phys. C 10, 275 (1981)Google Scholar
  24. 24.
    C.J. Morningstar, M.J. Peardon, Phys. Rev. D 56, 4043 (1997) [hep-lat/9704011].Google Scholar
  25. 25.
    J. Smit, Introduction to Quantum Fields on a Lattice (Cambridge University Press, 2002).Google Scholar
  26. 26.
    R.L. Jaffe, K. Johnson, Z. Ryzak, Ann. Phys. (N.Y.) 168, 344 (1986).Google Scholar
  27. 27.
    F. Buisseret, C. Semay, Eur. Phys. J. A 33, 87 (2007) [hep-ph/0611216].Google Scholar
  28. 28.
    M. Jacob, G.C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).Google Scholar
  29. 29.
    D.R. Giebink, Phys. Rev. C 32, 502 (1985).Google Scholar
  30. 30.
    G.C. Wick, Ann. Phys. (N.Y.) 18, 65 (1962).Google Scholar
  31. 31.
    A. Stadler, F. Gross, M. Frank, Phys. Rev. C 56, 2396 (1997).Google Scholar
  32. 32.
    W.K. Tung, Group Theory In Physics (World Scientific, Singapore, 1985).Google Scholar
  33. 33.
    W. Fulton, J. Harris, Representation Theory: A First Course (Springer-Verlag, New-York, 1991).Google Scholar
  34. 34.
    P.O. Hess, Eur. Phys. J. C 9, 121 (1999) [hep-ph/ 9810404].Google Scholar
  35. 35.
    C.N. Yang, Phys. Rev. 77, 242 (1950).Google Scholar
  36. 36.
    H. Fritzsch, P. Minkowski, Nuovo Cimento A 30, 393 (1975).Google Scholar
  37. 37.
    F.G. Fumi, L. Wolfenstein, Phys. Rev. 90, 498 (1953) and references therein.Google Scholar
  38. 38.
    V. Mathieu, F. Buisseret, J. Phys. G 35, 025006 (2008) [hep-ph/0702226].Google Scholar
  39. 39.
    P. Guo, Phys. Rev. D 77, 056005 (2008) [arXiv: 0707.3156].Google Scholar
  40. 40.
    C. Semay, D. Baye, M. Hesse, B. Silvestre-Brac, Phys. Rev. E 64, 016703 (2001).Google Scholar
  41. 41.
    P. Bicudo, M. Cardoso, O. Oliveira, Phys. Rev. D 77, 091504(R) (2008) [arXiv:0704.2156]Google Scholar
  42. 42.
    V. Mathieu, C. Semay, F. Brau, Eur. Phys. J. A 27, 225 (2006) [hep-ph/0511210].Google Scholar
  43. 43.
    Useful properties of the Gell-Mann matrices can be found, for example, in W. Greiner, B. Müller, Quantum Mechanics: Symmetries (Springer, Berlin, 1994).Google Scholar
  44. 44.
    P. Carruthers, Introduction to Unitary Symmetry (Interscience Publishers, USA, 1966).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • N. Boulanger
    • 1
  • F. Buisseret
    • 2
  • V. Mathieu
    • 2
  • C. Semay
    • 2
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Groupe de Physique Nucléaire ThéoriqueUniversité de Mons-Hainaut, Académie universitaire Wallonie-BruxellesMonsBelgium

Personalised recommendations