Advertisement

The European Physical Journal A

, Volume 36, Issue 3, pp 303–313 | Cite as

Forward-like functions for dual parametrization of GPDs from the nonlocal chiral quark model

  • K. M. Semenov-Tian-Shansky
Regular Article - Theoretical Physics

Abstract.

We derive the set of inversion relations allowing to establish the link between the dual parametrization of GPDs and a broad class of phenomenological models for GPDs. As an example we consider the results of the calculation of the pion GPD in the nonlocal chiral quark model (NlCQM) to recover the set of forward-like functions Q representing this GPD in the framework of dual parametrization. We also argue that the Abel tomography method overlooks possible δ -function-like contributions to the GPD quintessence function which make explicit contribution to the D form factor.

PACS.

12.38.Lg Other nonperturbative calculations 13.60.Fz Elastic and Compton scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Horejsi, Fortschr. Phys. 42, 101 (1994)CrossRefGoogle Scholar
  2. 2.
    K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001) [arXiv:hep-ph/0106012].CrossRefADSGoogle Scholar
  3. 3.
    M. Diehl, Phys. Rep. 388, 41 (2003) [arXiv:hep-ph/ 0307382].CrossRefADSGoogle Scholar
  4. 4.
    A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005) [arXiv:hep-ph/0504030].CrossRefADSGoogle Scholar
  5. 5.
    S. Boffi, B. Pasquini, Generalized parton distributions and the structure of the nucleon, arXiv:0711.2625 [hep-ph].Google Scholar
  6. 6.
    A.V. Radyushkin, Phys. Rev. D 59, 014030 (1999) [arXiv:hep-ph/9805342].CrossRefADSGoogle Scholar
  7. 7.
    M.V. Polyakov, C. Weiss, Phys. Rev. D 60, 114017 (1999) [arXiv:hep-ph/9902451].CrossRefADSGoogle Scholar
  8. 8.
    M.V. Polyakov, A.G. Shuvaev, On ``dual'' parametrization of generalized parton distributions, arXiv:hep-ph/0207153.Google Scholar
  9. 9.
    M.V. Polyakov, Phys. Lett. B 659, 542 (2008) [arXiv: 0707.2509 [hep-ph]].CrossRefADSGoogle Scholar
  10. 10.
    M.V. Polyakov, Nucl. Phys. B 555, 231 (1999) [arXiv:hep-ph/9809483].CrossRefADSGoogle Scholar
  11. 11.
    M.V. Polyakov, Educing GPDs from amplitudes of hard exclusive processes, arXiv:0711.1820 [hep-ph].Google Scholar
  12. 12.
    M.V. Polyakov, M. Vanderhaeghen, Taming Deeply Virtual Compton Scattering, arXiv:0803.1271 [hep-ph].Google Scholar
  13. 13.
    I.V. Anikin, O.V. Teryaev, Phys. Rev. D 76, 056007 (2007) [arXiv:0704.2185 [hep-ph]].CrossRefADSGoogle Scholar
  14. 14.
    M. Diehl, D.Y. Ivanov, arXiv:0712.3533 [hep-ph].Google Scholar
  15. 15.
    A.M. Moiseeva, M.V. Polyakov, Dual parameterization and Abel transform tomography for twist-3 DVCS, arXiv:0803.1777 [hep-ph].Google Scholar
  16. 16.
    D. Diakonov, V.Y. Petrov, Nucl. Phys. B 272, 457 (1986).CrossRefADSGoogle Scholar
  17. 17.
    V.Y. Petrov, P.V. Pobylitsa, arXiv:hep-ph/9712203.Google Scholar
  18. 18.
    V.Y. Petrov, M.V. Polyakov, R. Ruskov, C. Weiss, K. Goeke, Phys. Rev. D 59, 114018 (1999) [arXiv:hep-ph/9807229].CrossRefADSGoogle Scholar
  19. 19.
    M.V. Polyakov, C. Weiss, Phys. Rev. D 59, 091502 (1999) [arXiv:hep-ph/9806390]. CrossRefADSGoogle Scholar
  20. 20.
    I.V. Anikin, A.E. Dorokhov, A.E. Maksimov, L. Tomio, V. Vento, Nucl. Phys. A 678, 175 (2000).CrossRefADSGoogle Scholar
  21. 21.
    M. Praszalowicz, A. Rostworowski, Phys. Rev. D 66, 054002 (2002) [arXiv:hep-ph/0111196].CrossRefADSGoogle Scholar
  22. 22.
    M. Praszalowicz, A. Rostworowski, Acta Phys. Pol. B 34, 2699 (2003) [arXiv:hep-ph/0302269].ADSGoogle Scholar
  23. 23.
    M.V. Polyakov, Phys. Lett. B 555, 57 (2003) [arXiv:hep-ph/0210165].CrossRefADSMathSciNetMATHGoogle Scholar
  24. 24.
    I.V. Anikin, A.E. Dorokhov, L. Tomio, Phys. Part. Nucl. 31, 509 (2000) (Fiz. Elem. Chastits At. Yadra 31, 1023 (2000)).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • K. M. Semenov-Tian-Shansky
    • 1
    • 2
  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany
  2. 2.St.PetersburgSt. Petersburg State UniversityPetrodvoretzRussia

Personalised recommendations