The European Physical Journal A

, Volume 33, Issue 1, pp 21–27 | Cite as

Helicity amplitudes and crossing relations for one-photon exchange antiproton proton reactions

Regular Article - Nuclear Structure and Reactions


Antiproton proton annihilation reactions allow unique access to the moduli and phases of nucleon electromagnetic form factors in the time-like region. We present the helicity amplitudes for the unequal-mass single-photon reaction p¯ → l + l - in the s channel including the lepton mass. The relative signs of these amplitudes are determined using simple invariance properties. Helicity amplitudes for one-photon exchange annihilation reaction p¯ → B¯ are also given, where B is any spin-one-half particle with structure. Crossing relations between the epep scattering and the p¯ → l + l - annihilation channels are discussed and the crossing matrix for the helicity amplitudes is given. This matrix may be used to verify known expressions for the space-like helicity amplitudes due to one-photon exchange.


13.40.Gp Electromagnetic form factors 13.66.Bc Hadron production in e-e+ interactions 14.20.-c Baryons (including antiparticles) 14.60.-z Leptons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Andreotti, Phys. Lett. B 559, 20 (2003).CrossRefADSGoogle Scholar
  2. 2.
    Jefferson Lab Hall A Collaboration (M.K. Jones), Phys. Rev. Lett. 84, 1398 (2000)CrossRefADSGoogle Scholar
  3. 3.
    V. Punjabi, Phys. Rev. C 71, 055202 (2005)CrossRefADSGoogle Scholar
  4. 4.
    F. Ambrosino, arXiv:hep-ex/0603056.Google Scholar
  5. 5.
    N.H. Buttimore, E. Jennings, Eur. Phys. J. A 31, 9 (2007) [arXiv:hep-ph/0607227].CrossRefADSGoogle Scholar
  6. 6.
    A. Bianconi, B. Pasquini, M. Radici, Phys. Rev. D 74, 034009 (2006) [arXiv:hep-ph/0606299]CrossRefADSGoogle Scholar
  7. 7.
    PAX Collaboration (V. Barone), arXiv:hep-ex/ 0505054.Google Scholar
  8. 8.
    G. Bunce, N. Saito, J. Soffer, W. Vogelsang, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).CrossRefADSGoogle Scholar
  9. 9.
    N.H. Buttimore, B.Z. Kopeliovich, E. Leader, J. Soffer, T.L. Trueman, Phys. Rev. D 59, 114010 (1999).CrossRefADSGoogle Scholar
  10. 10.
    E. Tomasi-Gustafsson, F. Lacroix, C. Duterte, G.I. Gakh, Eur. Phys. J. A 24, 419 (2005) [arXiv:nucl-th/0503001].CrossRefADSGoogle Scholar
  11. 11.
    A.Z. Dubničková, S. Dubnička, M.P. Rekalo, Nuovo Cimento A 109, 241 (1996)Google Scholar
  12. 12.
    M. Jacob, G.C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).MATHCrossRefADSGoogle Scholar
  13. 13.
    T.L. Trueman, G.C. Wick, Ann. Phys. (N.Y.) 26, 322 (1964).MATHCrossRefADSGoogle Scholar
  14. 14.
    A.D. Martin, T.D. Spearman, Elementary Particle Theory (North-Holland Publishing Company, Amsterdam, 1970) sect. 7.2.3.Google Scholar
  15. 15.
    E. Leader, Spin in Particle Physics (Cambridge University Press, Cambridge, 2001).Google Scholar
  16. 16.
    Michael E. Peskin, Daniel V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, New York, 1995) sect. 1.7.Google Scholar
  17. 17.
    V.A. Okorokov, S.B. Nurushev, arXiv:hep-ph/0701226.Google Scholar
  18. 18.
    D.S. O'Brien, N.H. Buttimore, arXiv:hep-ph/0609233.Google Scholar
  19. 19.
    N.H. Buttimore, E. Gotsman, E. Leader, Phys. Rev. D 18, 694 (1978).CrossRefADSGoogle Scholar
  20. 20.
    R.G. Sachs, Phys. Rev. 126, 2256 (1962).MATHCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of MathematicsTrinity CollegeDublinIreland

Personalised recommendations