The European Physical Journal A

, Volume 32, Issue 1, pp 19–23 | Cite as

Nuclear giant resonances and linear response

  • P. -G. Reinhard
  • Lu Guo
  • J. A. Maruhn
Regular Article - Nuclear Structure and Reactions

Abstract.

We search for nonlinear effects in nuclear giant resonances (GRs), in particular the isovector dipole and the isoscalar quadrupole modes. To that end, we employ a spectral analysis of time-dependent Hartree-Fock (TDHF) dynamics using Skyrme forces. Based on TDHF calculations over a wide range of excitation amplitudes, we explore the collectivity and degree of harmonic motion in these modes. Both GR modes turn out to be highly harmonic in heavy nuclei from A = 100 on. There is no trace of a transition to irregular motion and multiple resonances are predicted. Slight anharmonicities are seen for light nuclei, particularly for 16O. These are mainly caused by the spin-orbit splitting.

PACS.

21.10.Re Collective levels 21.60.Jz Hartree-Fock and random-phase approximations 24.30.Cz Giant resonances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Rowe, Nuclear Collective Motion (Methuen, London, 1970).Google Scholar
  2. 2.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, Heidelberg, Berlin, 1980).Google Scholar
  3. 3.
    G.F. Bertsch, R. Broglia, Oscillations in Finite Quantum Systems (Cambridge University Press, Cambridge, 1994).Google Scholar
  4. 4.
    A. van der Woude, in Electric and Magnetic Giant Resonances in Nuclei, edited by J. Speth, Int. Rev. Nucl. Phys., Vol. 7 (World Scientific, 1991) pp. 99--232.Google Scholar
  5. 5.
    J. Speth, J. Wambach, in Electric and Magnetic Giant Resonances in Nuclei, edited by J. Speth, Int. Rev. Nucl. Phys., Vol. 7 (World Scientific, 1991) pp. 2--87.Google Scholar
  6. 6.
    G.E. Brown, Unified Theory of Nuclear Models and Forces, 3rd ed. (North-Holland, Amsterdam, London, 1971).Google Scholar
  7. 7.
    P.-G. Reinhard, Y.K. Gambhir, Ann. Phys. (Leipzig) 1, 598 (1992). ADSGoogle Scholar
  8. 8.
    P.-G. Reinhard, Ann. Phys. (Leipzig) 1, 632 (1992).ADSGoogle Scholar
  9. 9.
    K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996).CrossRefADSGoogle Scholar
  10. 10.
    F. Calvayrac, P.-G. Reinhard, E. Suraud, Ann. Phys. (N.Y.) 255, 125 (1997).CrossRefADSGoogle Scholar
  11. 11.
    J. Maruhn, P.-G. Reinhard, P. Stevenson, I. Stone, M. Strayer, Phys. Rev. C 71, 064328 (2005).CrossRefADSGoogle Scholar
  12. 12.
    H. Kleinert, H. Reinhardt, Nucl. Phys. A 332, 331 (1979).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    K. Goeke, P.-G. Reinhard, H. Reinhardt, Phys. Lett. B 118, 1 (1982).CrossRefADSGoogle Scholar
  14. 14.
    J.W. Negele, Rev. Mod. Phys. 54, 913 (1982).CrossRefADSGoogle Scholar
  15. 15.
    C. Yannouleas, M. Dworzecka, J. Griffin, Nucl. Phys. A 397, 239 (1983).CrossRefADSGoogle Scholar
  16. 16.
    H. Lenske, J. Wambach, Phys. Lett. B 249, 377 (1990).CrossRefADSGoogle Scholar
  17. 17.
    G. Lauritsch, P.-G. Reinhard, Nucl. Phys. A 509, 287 (1990).CrossRefADSGoogle Scholar
  18. 18.
    G.F. Bertsch, P.F. Bortignon, R.A. Broglia, Rev. Mod. Phys. 55, 287 (1983).CrossRefADSGoogle Scholar
  19. 19.
    K. Gütter, K. Wagner, P.-G. Reinhard, C. Toepffer, Ann. Phys. (N.Y.) 225, 339 (1993).CrossRefADSGoogle Scholar
  20. 20.
    D. Lacroix, A. Mai, P.V. Neumann-Cosel, A. Richter, J. Wambach, Phys. Lett. B 479, 15 (2000).CrossRefADSGoogle Scholar
  21. 21.
    P.-G. Reinhard, H.L. Yadav, C. Toepffer, Nucl. Phys. A 458, 301 (1986).CrossRefADSGoogle Scholar
  22. 22.
    P.F. Bortignon, R.A. Broglia, Nucl. Phys. A 371, 405 (1981).CrossRefADSGoogle Scholar
  23. 23.
    P.-H. Heenen, J. Skalski, Phys. Lett. B 381, 12 (1996).CrossRefADSGoogle Scholar
  24. 24.
    G. Colo, P.F. Bortignon, Nucl. Phys. A 687, 282c (2001).CrossRefADSGoogle Scholar
  25. 25.
    A. Abada, D. Vautherin, Phys. Rev. C 45, 2205 (1992).CrossRefADSGoogle Scholar
  26. 26.
    A. Umar, M. Strayer, R. Cusson, P.-G. Reinhard, D. Bromley, Phys. Rev. C 32, 172 (1985).CrossRefADSGoogle Scholar
  27. 27.
    D. Klakow, M. Weber, P.-G.Reinhard, Z. Phys. A 351, 391 (1995).CrossRefGoogle Scholar
  28. 28.
    J.-S. Wu, K.C. Wong, M.R. Strayer, M. Baranger, Phys. Rev. C 56, 857 (1997).CrossRefADSGoogle Scholar
  29. 29.
    G. Bertsch, H. Feldmeier, Phys. Rev. C 56, 839 (1997).CrossRefADSGoogle Scholar
  30. 30.
    D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Phys. Rev. E 60, 308 (1999).CrossRefADSGoogle Scholar
  31. 31.
    D.M. Brink, PhD Thesis, Oxford University, 1955.Google Scholar
  32. 32.
    LAND Collaboration (K.B.), Phys. Lett. B 384, 30 (1996).CrossRefADSGoogle Scholar
  33. 33.
    T. Aumann, P. Bortignon, H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).CrossRefADSGoogle Scholar
  34. 34.
    Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, D. Vautherin, Nucl. Phys. A 249, 215 (1975).CrossRefADSGoogle Scholar
  35. 35.
    J. Maruhn, P.-G. Reinhard, P. Stevenson, M. Strayer, Phys. Rev. C 74, 027601 (2006).CrossRefADSGoogle Scholar
  36. 36.
    R.J. Hinde, R.S. Berry, Z. Phys. D 26, 391 (1993).CrossRefGoogle Scholar
  37. 37.
    V. Blum, G. Lauritsch, J.A. Maruhn, P.-G. Reinhard, J. Comput. Phys. 100, 364 (1992).CrossRefGoogle Scholar
  38. 38.
    H. Flocard, S.E. Koonin, M.S. Weiss, Phys. Rev. C 17, 1682 (1978).CrossRefADSGoogle Scholar
  39. 39.
    P.-G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006).CrossRefADSGoogle Scholar
  40. 40.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)CrossRefADSGoogle Scholar
  42. 42.
    P.-G. Reinhard, A. Umar, K. Davies, M. Strayer, S.-J. Lee, Phys. Rev. C 37, 1026 (1988).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • P. -G. Reinhard
    • 1
  • Lu Guo
    • 2
  • J. A. Maruhn
    • 2
  1. 1.Institut für Theoretische Physik IIUniversität ErlangenErlangenGermany
  2. 2.Institut für Theoretische PhysikUniversität FrankfurtFrankfurt am MainGermany

Personalised recommendations