Advertisement

The European Physical Journal A

, Volume 31, Issue 4, pp 665–671 | Cite as

Unraveling the f0 nature by connecting KLOE and BABAR data through analyticity

  • S. Pacetti
QNP 2006

Abstract.

We define a general procedure, based on analyticity and dispersion relations, to estimate low-energy amplitudes for processes like: φe + e - M and φγM, starting from cross-section data on e + e -φM, where M is a generic light scalar or pseudoscalar meson. In particular this procedure is constructed to obtain predictions on the radiative decay rate which are crucially linked on the assumed quark structure for the meson M under consideration. Three cases are analyzed: M = η, M = f 0(q¯) and M = f 0(qq¯). While in the η case the estimate of the branching fraction for the radiative decay φηγ is in agreement with the data, in the case of f 0, such agreement is obtained only under the hypothesis of a tetraquark scalar meson.

PACS.

11.55.-n S-matrix theory; analytic structure of amplitudes 13.25.-k Hadronic decays of mesons 13.40.Gp Electromagnetic form factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.-M. Yao, J. Phys. G 33, 1 (2006).CrossRefADSGoogle Scholar
  2. 2.
    E. Klempt, arXiv:hep-ph/0404270.Google Scholar
  3. 3.
    N.N. Achasov, V.V. Gubin, Phys. Rev. D 63, 094007 (2001)CrossRefADSGoogle Scholar
  4. 4.
    M. Boglione, M.R. Pennington, Eur. Phys. J. C 30, 503 (2003) (arXiv:hep-ph/0303200).CrossRefADSGoogle Scholar
  5. 5.
    L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. Lett. 93, 212002 (2004) (arXiv:hep-ph/0407017).CrossRefADSGoogle Scholar
  6. 6.
    G. Isidori, L. Maiani, M. Nicolaci, S. Pacetti, JHEP 0605, 049 (2006) (arXiv:hep-ph/0603241).CrossRefADSGoogle Scholar
  7. 7.
    R.L. Jaffe, Phys. Rep. 409, 1 (2005) (Nucl. Phys. Proc. Suppl. 142, 343 (2005)) (arXiv:hep-ph/0409065).CrossRefADSGoogle Scholar
  8. 8.
    F.E. Close, AIP Conf. Proc. 717, 919 (2004) (arXiv:hep-ph/0311087).CrossRefADSGoogle Scholar
  9. 9.
    N.N. Achasov, V.N. Ivanchenko, Nucl. Phys. B 315, 465 (1989)CrossRefADSGoogle Scholar
  10. 10.
    KLOE Collaboration (F. Ambrosino), Phys. Lett. B 634, 148 (2006) (arXiv:hep-ex/0511031).CrossRefADSGoogle Scholar
  11. 11.
    G. Zweig, CERN report S419/TH412 (1964) unpublishedGoogle Scholar
  12. 12.
    P. Geiger, N. Isgur, Phys. Rev. D 47, 5050 (1993)CrossRefADSGoogle Scholar
  13. 13.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975).CrossRefADSGoogle Scholar
  14. 14.
    S.J. Brodsky, B.T. Chertok, Phys. Rev. D 14, 3003 (1976).CrossRefADSGoogle Scholar
  15. 15.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981). S.J. Brodsky, G.F. de Teramond, Phys. Lett. B 582, 211 (2004) (arXiv:hep-th/0310227).CrossRefADSGoogle Scholar
  16. 16.
    V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984)CrossRefADSGoogle Scholar
  17. 17.
    See for instance: E.C. Tichmarsch, The Theory of Functions (Oxford University Press, London, 1939).Google Scholar
  18. 18.
    B.V. Geshkenbein, Yad. Fiz. 9, 1232 (1969).Google Scholar
  19. 19.
    BABAR Collaboration (A. Zallo), private comunication.Google Scholar
  20. 20.
    M.N. Achasov, V.M. Aulchenko, K.I. Beloborodov, A.V. Berdyugin, Phys. Lett. B 504, 275 (2001).CrossRefADSGoogle Scholar
  21. 21.
    BABAR Collaboration (G. Solodov), Initial state radiation study at BABAR and the application to the R measurement and hadron spectroscopy, talk presented at ICHEP 06, Moscow, Russia. Google Scholar
  22. 22.
    R.L. Jaffe, Phys. Rev. D 15, 267 (1977).CrossRefADSGoogle Scholar
  23. 23.
    KLOE Collaboration (A. Aloisio), Phys. Lett. B 537, 21 (2002) (arXiv:hep-ex/0204013).CrossRefADSGoogle Scholar
  24. 24.
    J.J. Sakurai, Phys. Lett. B 46, 207 (1973).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratori Nazionali di Frascati, INFNFrascatiItaly

Personalised recommendations